685 research outputs found

    The effects of an experimental programme to support students’ autonomy on the overt behaviours of physical education teachers

    Get PDF
    Although the benefits of autonomy supportive behaviours are now well established in the literature, very few studies have attempted to train teachers to offer a greater autonomy support to their students. In fact, none of these studies has been carried out in physical education (PE). The purpose of this study is to test the effects of an autonomy-supportive training on overt behaviours of teaching among PE teachers. The experimental group included two PE teachers who were first educated on the benefits of an autonomy supportive style and then followed an individualised guidance programme during the 8 lessons of a teaching cycle. Their behaviours were observed and rated along 3 categories (i.e., autonomy supportive, neutral and controlling) and were subsequently compared to those of three teachers who formed the control condition. The results showed that teachers in the experimental group used more autonomy supportive and neutral behaviours than those in the control group, but no difference emerged in relation to controlling behaviours. We discuss the implications for schools of our findings

    Low-frequency gravitational-wave science with eLISA/NGO

    Get PDF
    We review the expected science performance of the New Gravitational-Wave Observatory (NGO, a.k.a. eLISA), a mission under study by the European Space Agency for launch in the early 2020s. eLISA will survey the low-frequency gravitational-wave sky (from 0.1 mHz to 1 Hz), detecting and characterizing a broad variety of systems and events throughout the Universe, including the coalescences of massive black holes brought together by galaxy mergers; the inspirals of stellar-mass black holes and compact stars into central galactic black holes; several millions of ultracompact binaries, both detached and mass transferring, in the Galaxy; and possibly unforeseen sources such as the relic gravitational-wave radiation from the early Universe. eLISA's high signal-to-noise measurements will provide new insight into the structure and history of the Universe, and they will test general relativity in its strong-field dynamical regime.Comment: 20 pages, 8 figures, proceedings of the 9th Amaldi Conference on Gravitational Waves. Final journal version. For a longer exposition of the eLISA science case, see http://arxiv.org/abs/1201.362

    Searching for Gravitational Waves from the Inspiral of Precessing Binary Systems: Astrophysical Expectations and Detection Efficiency of "Spiky'' Templates

    Get PDF
    Relativistic spin-orbit and spin-spin couplings has been shown to modify the gravitational waveforms expected from inspiraling binaries with a black hole and a neutron star. As a result inspiral signals may be missed due to significant losses in signal-to-noise ratio, if precession effects are ignored in gravitational-wave searches. We examine the sensitivity of the anticipated loss of signal-to-noise ratio on two factors: the accuracy of the precessing waveforms adopted as the true signals and the expected distributions of spin-orbit tilt angles, given the current understanding of their physical origin. We find that the results obtained using signals generated by approximate techniques are in good agreement with the ones obtained by integrating the 2PN equations. This shows that a complete account of all high-order post-Newtonian effects is usually not necessary for the determination of detection efficiencies. Based on our current astrophysical expectations, large tilt angles are not favored and as a result the decrease in detection rate varies rather slowly with respect to the black hole spin magnitude and is within 20--30% of the maximum possible values.Comment: 7 fig., accepted by Phys. Rev. D Minor modification

    Quenched charmonium spectrum

    Full text link
    We study charmonium using the standard relativistic formalism in the quenched approximation, on a set of lattices with isotropic lattice spacings ranging from 0.1 to 0.04 fm. We concentrate on the calculation of the hyperfine splitting between eta_c and J/psi, aiming for a controlled continuum extrapolation of this quantity. The splitting extracted from the non-perturbatively improved clover Dirac operator shows very little dependence on the lattice spacing for a≀0.1a \leq 0.1 fm. The dependence is much stronger for Wilson and tree-level improved clover operators, but they still yield consistent extrapolations if sufficiently fine lattices, a≀0.07a \leq 0.07 fm (aM(ηc)≀1a M(\eta_c) \leq 1), are used. Our result for the hyperfine splitting is 77(2)(6) MeV (where Sommer's parameter, r_0, is used to fix the scale). This value remains about 30% below experiment. Dynamical fermions and OZI-forbidden diagrams both contribute to the remainder. Results for the eta_c and J/psi wave functions are also presented.Comment: 22 pages, 7 figure

    DRAM-1 is required for mTORC1 activation by facilitating lysosomal amino acid efflux

    Get PDF
    Sensing nutrient availability is essential for appropriate cellular growth, and mTORC1 is a major regulator of this process. Mechanisms causing mTORC1 activation are, however, complex and diverse. We report here an additional important step in the activation of mTORC1, which regulates the efflux of amino acids from lysosomes into the cytoplasm. This process requires DRAM-1, which binds the membrane carrier protein SCAMP3 and the amino acid transporters SLC1A5 and LAT1, directing them to lysosomes and permitting efficient mTORC1 activation. Consequently, we show that loss of DRAM-1 also impacts pathways regulated by mTORC1, including insulin signaling, glycemic balance, and adipocyte differentiation. Interestingly, although DRAM-1 can promote autophagy, this effect on mTORC1 is autophagy independent, and autophagy only becomes important for mTORC1 activation when DRAM-1 is deleted. These findings provide important insights into mTORC1 activation and highlight the importance of DRAM-1 in growth control, metabolic homeostasis, and differentiation

    Modeling biomedical experimental processes with OBI

    Get PDF
    BACKGROUND: Experimental descriptions are typically stored as free text without using standardized terminology, creating challenges in comparison, reproduction and analysis. These difficulties impose limitations on data exchange and information retrieval. RESULTS: The Ontology for Biomedical Investigations (OBI), developed as a global, cross-community effort, provides a resource that represents biomedical investigations in an explicit and integrative framework. Here we detail three real-world applications of OBI, provide detailed modeling information and explain how to use OBI. CONCLUSION: We demonstrate how OBI can be applied to different biomedical investigations to both facilitate interpretation of the experimental process and increase the computational processing and integration within the Semantic Web. The logical definitions of the entities involved allow computers to unambiguously understand and integrate different biological experimental processes and their relevant components. AVAILABILITY: OBI is available at http://purl.obolibrary.org/obo/obi/2009-11-02/obi.ow

    Methods to study splicing from high-throughput RNA Sequencing data

    Full text link
    The development of novel high-throughput sequencing (HTS) methods for RNA (RNA-Seq) has provided a very powerful mean to study splicing under multiple conditions at unprecedented depth. However, the complexity of the information to be analyzed has turned this into a challenging task. In the last few years, a plethora of tools have been developed, allowing researchers to process RNA-Seq data to study the expression of isoforms and splicing events, and their relative changes under different conditions. We provide an overview of the methods available to study splicing from short RNA-Seq data. We group the methods according to the different questions they address: 1) Assignment of the sequencing reads to their likely gene of origin. This is addressed by methods that map reads to the genome and/or to the available gene annotations. 2) Recovering the sequence of splicing events and isoforms. This is addressed by transcript reconstruction and de novo assembly methods. 3) Quantification of events and isoforms. Either after reconstructing transcripts or using an annotation, many methods estimate the expression level or the relative usage of isoforms and/or events. 4) Providing an isoform or event view of differential splicing or expression. These include methods that compare relative event/isoform abundance or isoform expression across two or more conditions. 5) Visualizing splicing regulation. Various tools facilitate the visualization of the RNA-Seq data in the context of alternative splicing. In this review, we do not describe the specific mathematical models behind each method. Our aim is rather to provide an overview that could serve as an entry point for users who need to decide on a suitable tool for a specific analysis. We also attempt to propose a classification of the tools according to the operations they do, to facilitate the comparison and choice of methods.Comment: 31 pages, 1 figure, 9 tables. Small corrections adde

    A Pan-Canadian Validation Study for the Detection of EGFR T790M Mutation Using Circulating Tumor DNA From Peripheral Blood

    Get PDF
    Introduction: Genotyping circulating tumor DNA (ctDNA) is a promising noninvasive clinical tool to identify the EGFR T790M resistance mutation in patients with advanced NSCLC with resistance to EGFR inhibitors. To facilitate standardization and clinical adoption of ctDNA testing across Canada, we developed a 2-phase multicenter study to standardize T790M mutation detection using plasma ctDNA testing. Methods: In phase 1, commercial reference standards were distributed to participating clinical laboratories, to use their existing platforms for mutation detection. Baseline performance characteristics were established using known and blinded engineered plasma samples spiked with predetermined concentrations of T790M, L858R, and exon 19 deletion variants. In phase II, peripheral blood collected from local patients with known EGFR activating mutations and progressing on treatment were assayed for the presence of EGFR variants and concordance with a clinically validated test at the reference laboratory. Results: All laboratories in phase 1 detected the variants at 0.5 % and 5.0 % allele frequencies, with no false positives. In phase 2, the concordance with the reference laboratory for detection of both the primary and resistance mutation was high, with next-generation sequencing and droplet digital polymerase chain reaction exhibiting the best overall concordance. Data also suggested that the ability to detect mutations at clinically relevant limits of detection is generally not platform-specific, but rather impacted by laboratory-specific practices. Conclusions: Discrepancies among sending laboratories using the same assay suggest that laboratory-specific practices may impact performance. In addition, a negative or inconclusive ctDNA test should be followed by tumor testing when possible

    Forearm muscle oxidative capacity index predicts sport rock-climbing performance

    Get PDF
    Abstract: Rock-climbing performance is largely dependent on the endurance of the forearm flexors. Recently, it was reported that forearm flexor endurance in elite climbers is independent of the ability to regulate conduit artery (brachial) blood flow, suggesting that endurance is not primarily dependent on the ability of the brachial artery to deliver oxygen, but rather the ability of the muscle to perfuse and use oxygen, i.e., skeletal muscle oxidative capacity. Purpose: The aim of the study was to determine whether an index of oxidative capacity in the flexor digitorum profundus (FDP) predicts the best sport climbing red-point grade within the last 6 months. Participants consisted of 46 sport climbers with a range of abilities. Methods: Using near-infrared spectroscopy, the oxidative capacity index of the FDP was assessed by calculating the half-time for tissue oxygen resaturation (O2HTR) following 3–5 min of ischemia. Results: Linear regression, adjusted for age, sex, BMI, and training experience, revealed a 1-s decrease in O2HTR was associated with an increase in red-point grade by 0.65 (95 % CI 0.35–0.94, Adj R2 = 0.53). Conclusions: Considering a grade of 0.4 separated the top four competitors in the 2015 International Federation Sport Climbing World Cup, this finding suggests that forearm flexor oxidative capacity index is an important determinant of rock-climbing performance
    • 

    corecore