2,164 research outputs found
Marketing Percolation
A percolation model is presented, with computer simulations for
illustrations, to show how the sales of a new product may penetrate the
consumer market. We review the traditional approach in the marketing
literature, which is based on differential or difference equations similar to
the logistic equation (Bass 1969). This mean field approach is contrasted with
the discrete percolation on a lattice, with simulations of "social percolation"
(Solomon et al 2000) in two to five dimensions giving power laws instead of
exponential growth, and strong fluctuations right at the percolation threshold.Comment: to appear in Physica
Paths to the light and dark sides of human nature : A meta-analysis of the prosocial benefits of autonomy and the antisocial costs of control
Self-determination theory (SDT) posits that experiences of autonomy lead people to be more prosocial, whereas experiences of control lead to antisocial actions. In this meta-analysis, we tested the links between autonomy and prosociality and control and antisociality, across 139 reports (167 studies) with 1,189 effect sizes (N = 75,546 participants). We used two-stage structural equation modeling including both correlational and longitudinal study designs. We found support for the hypothesized direct links between autonomy and prosociality and between control and antisociality, with cross-paths between these constructs being weaker. In line with SDTâs claims that the salutary effects of autonomy are universal, results also showed that the hypothesized links were consistent across cultures, genders, and age categories. We also reviewed emerging experimental research on the effect of autonomy-priming interventions on prosociality. To conclude, we discuss the theoretical and practical implications of these findings and lay out an agenda for future research. (PsycInfo Database Record (c) 2022 APA, all rights reserved
Transcript-indexed ATAC-seq for precision immune profiling.
T cells create vast amounts of diversity in the genes that encode their T cell receptors (TCRs), which enables individual clones to recognize specific peptide-major histocompatibility complex (MHC) ligands. Here we combined sequencing of the TCR-encoding genes with assay for transposase-accessible chromatin with sequencing (ATAC-seq) analysis at the single-cell level to provide information on the TCR specificity and epigenomic state of individual T cells. By using this approach, termed transcript-indexed ATAC-seq (T-ATAC-seq), we identified epigenomic signatures in immortalized leukemic T cells, primary human T cells from healthy volunteers and primary leukemic T cells from patient samples. In peripheral blood CD4+ T cells from healthy individuals, we identified cis and trans regulators of naive and memory T cell states and found substantial heterogeneity in surface-marker-defined T cell populations. In patients with a leukemic form of cutaneous T cell lymphoma, T-ATAC-seq enabled identification of leukemic and nonleukemic regulatory pathways in T cells from the same individual by allowing separation of the signals that arose from the malignant clone from the background T cell noise. Thus, T-ATAC-seq is a new tool that enables analysis of epigenomic landscapes in clonal T cells and should be valuable for studies of T cell malignancy, immunity and immunotherapy
Photon mass and electrogenesis
We show that if photon possesses a tiny but non-vanishing mass the universe
cannot be electrically neutral. Cosmological electric asymmetry could be
generated either at an early stage by different evaporation rates of primordial
black holes with respect to positively and negatively charged particles or by
predominant capture of protons in comparison to electrons by heavy galactic
black holes in contemporary universe. An impact of this phenomenon on the
generation of large scale magnetic fields and on the universe acceleration is
considered.Comment: 15 pages, no figures, text added, typos corrected, refs. improve
The Coral Bleaching Automated Stress System (CBASS): A lowâcost, portable system for standardized empirical assessments of coral thermal limits
Ocean warming is increasingly affecting marine ecosystems across the globe. Reef-building corals are particularly affected by warming, with mass bleaching events increasing in frequency and leading to widespread coral mortality. Yet, some corals can resist or recover from bleaching better than others. Such variability in thermal resilience could be critical to reef persistence; however, the scientific community lacks standardized diagnostic approaches to rapidly and comparatively assess coral thermal vulnerability prior to bleaching events. We present the Coral Bleaching Automated Stress System (CBASS) as a low-cost, open-source, field-portable experimental system for rapid empirical assessment of coral thermal thresholds using standardized temperature stress profiles and diagnostics. The CBASS consists of four or eight flow-through experimental aquaria with independent water masses, lighting, and individual automated temperature controls capable of delivering custom modulating thermal profiles. The CBASS is used to conduct daily thermal stress exposures that typically include 3-h temperature ramps to multiple target temperatures, a 3-h hold period at the target temperatures, and a 1-h ramp back down to ambient temperature, followed by an overnight recovery period. This mimics shallow water temperature profiles observed in coral reefs and prompts a rapid acute heat stress response that can serve as a diagnostic tool to identify putative thermotolerant corals for in-depth assessments of adaptation mechanisms, targeted conservation, and possible use in restoration efforts. The CBASS is deployable within hours and can assay up to 40 coral fragments/aquaria/day, enabling high-throughput, rapid determination of thermal thresholds for individual genotypes, populations, species, and sites using a standardized experimental framework
The Coral Bleaching Automated Stress System (CBASS): A Low-Cost, Portable System for Standardized Empirical Assessments of Coral Thermal Limits
Ocean warming is increasingly affecting marine ecosystems across the globe. Reef-building corals are particularly affected by warming, with mass bleaching events increasing in frequency and leading to widespread coral mortality. Yet, some corals can resist or recover from bleaching better than others. Such variability in thermal resilience could be critical to reef persistence; however, the scientific community lacks standardized diagnostic approaches to rapidly and comparatively assess coral thermal vulnerability prior to bleaching events. We present the Coral Bleaching Automated Stress System (CBASS) as a low-cost, open-source, field-portable experimental system for rapid empirical assessment of coral thermal thresholds using standardized temperature stress profiles and diagnostics. The CBASS consists of four or eight flow-through experimental aquaria with independent water masses, lighting, and individual automated temperature controls capable of delivering custom modulating thermal profiles. The CBASS is used to conduct daily thermal stress exposures that typically include 3-h temperature ramps to multiple target temperatures, a 3-h hold period at the target temperatures, and a 1-h ramp back down to ambient temperature, followed by an overnight recovery period. This mimics shallow water temperature profiles observed in coral reefs and prompts a rapid acute heat stress response that can serve as a diagnostic tool to identify putative thermotolerant corals for in-depth assessments of adaptation mechanisms, targeted conservation, and possible use in restoration efforts. The CBASS is deployable within hours and can assay up to 40 coral fragments/aquaria/day, enabling high-throughput, rapid determination of thermal thresholds for individual genotypes, populations, species, and sites using a standardized experimental framework
Sand dams for sustainable water management: challenges and future opportunities
Sand dams are impermeable water harvesting structures built to collect and store water within the volume of sediments transported by ephemeral rivers. The artificial sandy aquifer created by the sand dam reduces evaporation losses relative to surface water storage in traditional dams. Recent years have seen a renaissance of studies on sand dams as an effective water scarcity adaptation strategy for drylands. However, many aspects of their functioning and effectiveness are still unclear. Literature reviews have pointed to a range of research gaps that need further scientific attention, such as river corridors and network dynamics, watershed-scale impacts, and interaction with social dynamics. However, the scattered and partially incomplete information across the different reviews would benefit from an integrated framework for directing future research efforts. This paper is a collaborative effort of different research groups active on sand dams and stems from the need to channel future research efforts on this topic in a thorough and coherent way. We synthesize the pivotal research gaps of a) unclear definition of âfunctioningâ sand dams, b) lack of methodologies for watershed-scale analysis, c) neglect of social aspects in sand dam research, and d) underreported impacts of sand dams. We then propose framing future research to better target the synthesized gaps, including using the social-ecological systems framework to better capture the interconnected social and biophysical research gaps on sand dams, fully utilizing the potential of remote sensing in large-scale studies and collecting sand dam cases across the world to create an extensive database to advance evidence-based research on sand dams
Controlled in vitro delivery of voriconazole and diclofenac to the cornea using contact lenses for the treatment of Acanthamoeba keratitis
Acanthamoeba keratitis is caused by a protozoal infection of the cornea, with 80% of cases involving the improper use of contact lenses. The infection causes intense pain and is potentially blinding. However, early diagnosis improves treatment efficacy and the chances of healing. Despite the apparent accessibility of the cornea, patients do not always respond well to current eye drop treatments largely due to rapid dose loss due to blinking and nasolacrimal drainage. Here, the topical drug delivery of voriconazole alone and in combination with diclofenac via drug-loaded contact lenses, were investigated in vitro. The contact lenses were applied onto excised porcine eyeballs and maintained at 32°C under constant irrigation, with simulated tear fluid applied to mimic in vivo conditions. The drug delivered to the corneas was quantified by HPLC analysis. The system was further tested in terms of cytotoxicity and a scratch wound repopulation model, using corneal epithelial cells. Sustained drug delivery to the cornea was achieved and for voriconazole, the MIC against Acanthamoeba castellanii was attained alone and in combination with diclofenac. MTT and scratch wound data showed reasonable cell proliferation and wound repopulation at the drug doses used, supporting further development of the system to treat Acanthamoeba keratitis
Spatially Explicit Data: Stewardship and Ethical Challenges in Science
Scholarly communication is at an unprecedented turning point created in part by the increasing saliency of data stewardship and data sharing. Formal data management plans represent a new emphasis in research, enabling access to data at higher volumes and more quickly, and the potential for replication and augmentation of existing research. Data sharing has recently transformed the practice, scope, content, and applicability of research in several disciplines, in particular in relation to spatially specific data. This lends exciting potentiality, but the most effective ways in which to implement such changes, particularly for disciplines involving human subjects and other sensitive information, demand consideration. Data management plans, stewardship, and sharing, impart distinctive technical, sociological, and ethical challenges that remain to be adequately identified and remedied. Here, we consider these and propose potential solutions for their amelioration
Evaluation of the influence of kyphosis and scoliosis on intervertebral disc extrusion in French bulldogs
Although thoracic vertebral malformations with kyphosis and scoliosis are often considered incidental findings on diagnostic imaging studies of screw-tailed brachycephalic breeds, they have been suggested to interfere with spinal biomechanics and intervertebral disc degeneration. It is however unknown if an abnormal spinal curvature also predisposes dogs to develop clinically relevant intervertebral disc herniations. The aim of this study was to evaluate if the occurrence of thoracic vertebral malformations, kyphosis or scoliosis would be associated with a higher prevalence of cervical or thoracolumbar intervertebral disc extrusion in French bulldogs
- âŠ