3,812 research outputs found

    Quadrupole moments of rotating neutron stars

    Full text link
    Numerical models of rotating neutron stars are constructed for four equations of state using the computer code RNS written by Stergioulas. For five selected values of the star's gravitational mass (in the interval between 1.0 and 1.8 solar masses) and for each equation of state, the star's angular momentum is varied from J=0 to the Keplerian limit J=J_{max}. For each neutron-star configuration we compute Q, the quadrupole moment of the mass distribution. We show that for given values of M and J, |Q| increases with the stiffness of the equation of state. For fixed mass and equation of state, the dependence on J is well reproduced with a simple quadratic fit, Q \simeq - aJ^2/M c^2, where c is the speed of light, and a is a parameter of order unity depending on the mass and the equation of state.Comment: ReVTeX, 7 pages, 5 figures, additional material, and references adde

    Inferring Tunicate Relationships And The Evolution Of The Tunicate Hox Cluster With The Genome Of Corella Inflata

    Get PDF
    Tunicates, the closest living relatives of vertebrates, have served as a foundational model of early embryonic development for decades. Comparative studies of tunicate phylogeny and genome evolution provide a critical framework for analyzing chordate diversification and the emergence of vertebrates. Towards this goal, we sequenced the genome of Corella inflata (Ascidiacea, Phlebobranchia), so named for the capacity to brood self-fertilized embryos in a modified, “inflated” atrial chamber. Combining the new genome sequence for Co. inflata with publicly available tunicate data, we estimated a tunicate species phylogeny, reconstructed the ancestral Hox gene cluster at important nodes in the tunicate tree, and compared patterns of gene loss between Co. inflata and Ciona robusta, the prevailing tunicate model species. Our maximum-likelihood and Bayesian trees estimated from a concatenated 210-gene matrix were largely concordant and showed that Aplousobranchia was nested within a paraphyletic Phlebobranchia. We demonstrated that this relationship is not an artifact due to compositional heterogeneity, as had been suggested by previous studies. In addition, within Thaliacea, we recovered Doliolida as sister to the clade containing Salpida and Pyrosomatida. The Co. inflata genome provides increased resolution of the ancestral Hox clusters of key tunicate nodes, therefore expanding our understanding of the evolution of this cluster and its potential impact on tunicate morphological diversity. Our analyses of other gene families revealed that several cardiovascular associated genes (e.g., BMP10, SCL2A12, and PDE2a) absent from Ci. robusta are present in Co. inflata. Taken together, our results help clarify tunicate relationships and the genomic content of key ancestral nodes within this phylogeny, providing critical insights into tunicate evolution

    Magmatic Subsidence of the East Pacific Rise (EPR) at 18˚14\u27S Revealed Through Fault Restoration of Ridge Crest Bathymetry

    Get PDF
    The fault restoration technique of De Chabalier and Avouac [1994] is applied to an ultra-highresolution bathymetry data set from the East Pacific Rise (EPR) at 18140S. Fault offsets are calculated and subtracted from the original seafloor bathymetry to examine the morphology of the unfaulted seafloor surface within an area encompassing the ridge axis 400 [1] 1600 m in dimension. The restored topography reveals a gently sloping seafloor 200 m wide, which slopes 5 inward toward the spreading axis. We attribute this inward sloping seafloor to subsidence within the axial trough due to subsurface magmatic deflation. The vertical deformation field extracted from the bathymetry is used to characterize the ridge axis fault population present in the area. Median fault throws (9 m for inward-facing and 8 m for outwardfacing faults) are comparable to values measured for nearby mature abyssal hill fault populations, suggesting a genetic link. However, median fault spacings (70 and 46 m) are an order of magnitude smaller, and estimated total extensional strain is 3[1]–4[1] greater than values measured for ridge flank faults. These differences indicate the axial fault population at 18140S cannot be rafted onto the ridge flanks to form abyssal hill faults without significant modification, presumably via volcanic burial. We attribute the dense faulting observed in this area to slip on axial fissures during subsidence of the crestal region. The surface subsidence of a volcanic edifice can be modeled in terms of volume change in the magma source reservoir and volume of magma withdrawn from the reservoir. Using the relationship derived for a sill-like magma body, we estimate that the axial depression at 18140S could represent magma withdrawal associated with a small number (4–22) of the frequent dike injection and eruption events required to build the upper crust during the evolution of the trough. The subsidence volumes represented by the axial topography at 18140S are a small percentage of the underlying upper crustal sections (3–4%), suggesting that only a minor mismatch between magma recharge and withdrawal from the axial melt lens during ongoing plate separation could account for this pronounced axial depression

    Persistent starspot signals on M dwarfs: multi-wavelength Doppler observations with the Habitable-zone Planet Finder and Keck/HIRES

    Get PDF
    Young, rapidly-rotating M dwarfs exhibit prominent starspots, which create quasiperiodic signals in their photometric and Doppler spectroscopic measurements. The periodic Doppler signals can mimic radial velocity (RV) changes expected from orbiting exoplanets. Exoplanets can be distinguished from activity-induced false positives by the chromaticity and long-term incoherence of starspot signals, but these qualities are poorly constrained for fully-convective M stars. Coherent photometric starspot signals on M dwarfs may persist for hundreds of rotations, and the wavelength dependence of starspot RV signals may not be consistent between stars due to differences in their magnetic fields and active regions. We obtained precise multi-wavelength RVs of four rapidly-rotating M dwarfs (AD Leo, G 227-22, GJ 1245B, GJ 3959) using the near-infrared (NIR) Habitable-zone Planet Finder, and the optical Keck/HIRES spectrometer. Our RVs are complemented by photometry from Kepler, TESS, and the Las Cumbres Observatory (LCO) network of telescopes. We found that all four stars exhibit large spot-induced Doppler signals at their rotation periods, and investigated the longevity and optical-to-NIR chromaticity for these signals. The phase curves remain coherent much longer than is typical for Sunlike stars. Their chromaticity varies, and one star (GJ 3959) exhibits optical and NIR RV modulation consistent in both phase and amplitude. In general, though, we find that the NIR amplitudes are lower than their optical counterparts. We conclude that starspot modulation for rapidly-rotating M stars frequently remains coherent for hundreds of stellar rotations, and gives rise to Doppler signals that, due to this coherence, may be mistaken for exoplanets.Comment: Accepted for publication in the Astrophysical Journa

    Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b

    Get PDF
    The nearby extrasolar planet GJ 436b--which has been labelled as a 'hot Neptune'--reveals itself by the dimming of light as it crosses in front of and behind its parent star as seen from Earth. Respectively known as the primary transit and secondary eclipse, the former constrains the planet's radius and mass, and the latter constrains the planet's temperature and, with measurements at multiple wavelengths, its atmospheric composition. Previous work using transmission spectroscopy failed to detect the 1.4-\mu m water vapour band, leaving the planet's atmospheric composition poorly constrained. Here we report the detection of planetary thermal emission from the dayside of GJ 436b at multiple infrared wavelengths during the secondary eclipse. The best-fit compositional models contain a high CO abundance and a substantial methane (CH4) deficiency relative to thermochemical equilibrium models for the predicted hydrogen-dominated atmosphere. Moreover, we report the presence of some H2O and traces of CO2. Because CH4 is expected to be the dominant carbon-bearing species, disequilibrium processes such as vertical mixing and polymerization of methane into substances such as ethylene may be required to explain the hot Neptune's small CH4-to-CO ratio, which is at least 10^5 times smaller than predicted

    The sweet spot in sustainability: a framework for corporate assessment in sugar manufacturing

    Get PDF
    The assessment of corporate sustainability has become an increasingly important topic, both within academia and in industry. For manufacturing companies to conform to their commitments to sustainable development, a standard and reliable measurement framework is required. There is, however, a lack of sector-specific and empirical research in many areas, including the sugar industry. This paper presents an empirically developed framework for the assessment of corporate sustainability within the Thai sugar industry. Multiple case studies were conducted, and a survey using questionnaires was also employed to enhance the power of generalisation. The developed framework is an accurate and reliable measurement instrument of corporate sustainability, and guidelines to assess qualitative criteria are put forward. The proposed framework can be used for a company’s self-assessment and for guiding practitioners in performance improvement and policy decision-maki
    corecore