46 research outputs found

    Tomato root transcriptome response to a nitrogen-enriched soil patch

    Get PDF
    Background: Nitrogen (N), the primary limiting factor for plant growth and yield in agriculture, has a patchy distribution in soils due to fertilizer application or decomposing organic matter. Studies in solution culture oversimplify the complex soil environment where microbial competition and spatial and temporal heterogeneity challenge roots\u27 ability to acquire adequate amounts of nutrients required for plant growth. In this study, various ammonium treatments (as 15N) were applied to a discrete volume of soil containing tomato (Solanum lycopersicum) roots to simulate encounters with a localized enriched patch of soil. Transcriptome analysis was used to identify genes differentially expressed in roots 53 hrs after treatment. Results: The ammonium treatments resulted in significantly higher concentrations of both ammonium and nitrate in the patch soil. The plant roots and shoots exhibited increased levels of 15N over time, indicating a sustained response to the enriched environment. Root transcriptome analysis identified 585 genes differentially regulated 53 hrs after the treatments. Nitrogen metabolism and cell growth genes were induced by the high ammonium (65 μg NH4 +-N g-1 soil), while stress response genes were repressed. The complex regulation of specific transporters following the ammonium pulse reflects a simultaneous and synergistic response to rapidly changing concentrations of both forms of inorganic N in the soil patch. Transcriptional analysis of the phosphate transporters demonstrates cross-talk between N and phosphate uptake pathways and suggests that roots increase phosphate uptake via the arbuscular mycorrhizal symbiosis in response to N. Conclusion: This work enhances our understanding of root function by providing a snapshot of the response of the tomato root transcriptome to a pulse of ammonium in a complex soil environment. This response includes an important role for the mycorrhizal symbiosis in the utilization of an N patch. Additional files attached below

    Dynamical heterogeneity in aging colloidal glasses of Laponite

    Full text link
    Glasses behave as solids due to their long relaxation time; however the origin of this slow response remains a puzzle. Growing dynamic length scales due to cooperative motion of particles are believed to be central to the understanding of both the slow dynamics and the emergence of rigidity. Here, we provide experimental evidence of a growing dynamical heterogeneity length scale that increases with increasing waiting time in an aging colloidal glass of Laponite. The signature of heterogeneity in the dynamics follows from dynamic light scattering measurements in which we study both the rotational and translational diffusion of the disk-shaped particles of Laponite in suspension. These measurements are accompanied by simultaneous microrheology and macroscopic rheology experiments. We find that rotational diffusion of particles slows down at a faster rate than their translational motion. Such decoupling of translational and orientational degrees of freedom finds its origin in the dynamic heterogeneity since rotation and translation probe different length scales in the sample. The macroscopic rheology experiments show that the low frequency shear viscosity increases at a much faster rate than both rotational and translational diffusive relaxation times.Comment: 12 pages, 5 figures, Accepted in Soft Matter 201

    A genome triplication associated with early diversification of the core eudicots

    Get PDF
    Background: Although it is agreed that a major polyploidy event, gamma, occurred within the eudicots, the phylogenetic placement of the event remains unclear. Results: To determine when this polyploidization occurred relative to speciation events in angiosperm history, we employed a phylogenomic approach to investigate the timing of gene set duplications located on syntenic gamma blocks. We populated 769 putative gene families with large sets of homologs obtained from public transcriptomes of basal angiosperms, magnoliids, asterids, and more than 91.8 gigabases of new next-generation transcriptome sequences of non-grass monocots and basal eudicots. The overwhelming majority (95%) of well-resolved gamma duplications was placed before the separation of rosids and asterids and after the split of monocots and eudicots, providing strong evidence that the gamma polyploidy event occurred early in eudicot evolution. Further, the majority of gene duplications was placed after the divergence of the Ranunculales and core eudicots, indicating that the gamma appears to be restricted to core eudicots. Molecular dating estimates indicate that the duplication events were intensely concentrated around 117 million years ago. Conclusions: The rapid radiation of core eudicot lineages that gave rise to nearly 75% of angiosperm species appears to have occurred coincidentally or shortly following the gamma triplication event. Reconciliation of gene trees with a species phylogeny can elucidate the timing of major events in genome evolution, even when genome sequences are only available for a subset of species represented in the gene trees. Comprehensive transcriptome datasets are valuable complements to genome sequences for high-resolution phylogenomic analysis

    Selective Induction of Cell Death in Melanoma Cell Lines through Targeting of Mcl-1 and A1

    Get PDF
    Melanoma is an often fatal form of skin cancer which is remarkably resistant against radio- and chemotherapy. Even new strategies that target RAS/RAF signaling and display unprecedented efficacy are characterized by resistance mechanisms. The targeting of survival pathways would be an attractive alternative strategy, if tumor-specific cell death can be achieved. Bcl-2 proteins play a central role in regulating survival of tumor cells. In this study, we systematically investigated the relevance of antiapoptotic Bcl-2 proteins, i.e., Bcl-2, Bcl-xL, Bcl-w, Mcl-1, and A1, in melanoma cell lines and non-malignant cells using RNAi. We found that melanoma cells required the presence of specific antiapoptotic Bcl-2 proteins: Inhibition of Mcl-1 and A1 strongly induced cell death in some melanoma cell lines, whereas non-malignant cells, i.e., primary human fibroblasts or keratinocytes were not affected. This specific sensitivity of melanoma cells was further enhanced by the combined inhibition of Mcl-1 and A1 and resulted in 60% to 80% cell death in all melanoma cell lines tested. This treatment was successfully combined with chemotherapy, which killed a substantial proportion of cells that survived Mcl-1 and A1 inhibition. Together, these results identify antiapoptotic proteins on which specifically melanoma cells rely on and, thus, provide a basis for the development of new Bcl-2 protein-targeting therapies

    Circulating microRNAs in sera correlate with soluble biomarkers of immune activation but do not predict mortality in ART treated individuals with HIV-1 infection: A case control study

    Get PDF
    Introduction: The use of anti-retroviral therapy (ART) has dramatically reduced HIV-1 associated morbidity and mortality. However, HIV-1 infected individuals have increased rates of morbidity and mortality compared to the non-HIV-1 infected population and this appears to be related to end-organ diseases collectively referred to as Serious Non-AIDS Events (SNAEs). Circulating miRNAs are reported as promising biomarkers for a number of human disease conditions including those that constitute SNAEs. Our study sought to investigate the potential of selected miRNAs in predicting mortality in HIV-1 infected ART treated individuals. Materials and Methods: A set of miRNAs was chosen based on published associations with human disease conditions that constitute SNAEs. This case: control study compared 126 cases (individuals who died whilst on therapy), and 247 matched controls (individuals who remained alive). Cases and controls were ART treated participants of two pivotal HIV-1 trials. The relative abundance of each miRNA in serum was measured, by RTqPCR. Associations with mortality (all-cause, cardiovascular and malignancy) were assessed by logistic regression analysis. Correlations between miRNAs and CD4+ T cell count, hs-CRP, IL-6 and D-dimer were also assessed. Results: None of the selected miRNAs was associated with all-cause, cardiovascular or malignancy mortality. The levels of three miRNAs (miRs -21, -122 and -200a) correlated with IL-6 while miR-21 also correlated with D-dimer. Additionally, the abundance of miRs -31, -150 and -223, correlated with baseline CD4+ T cell count while the same three miRNAs plus miR- 145 correlated with nadir CD4+ T cell count. Discussion: No associations with mortality were found with any circulating miRNA studied. These results cast doubt onto the effectiveness of circulating miRNA as early predictors of mortality or the major underlying diseases that contribute to mortality in participants treated for HIV-1 infection

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    An interactive web-based guide to the benthic invertebrates of Gray’s Reef

    No full text
    Presented at Marine Benthic Ecology Meeting

    The reduced mycorrhizal colonization (\u3ci\u3ermc\u3c/i\u3e) mutation of tomato disrupts five gene sequences including the \u3ci\u3eCYCLOPS/IPD3\u3c/i\u3e homologue

    Get PDF
    Arbuscular mycorrhizal (AM) symbiosis in vascular plant roots is an ancient mutualistic interaction that evolved with land plants. More recently evolved root mutualisms have recruited components of the AM signaling pathway as identified with molecular approaches in model legume research. Earlier we reported that the reduced mycorrhizal colonization (rmc) mutation of tomato mapped to chromosome 8. Here we report additional functional characterization of the rmc mutation using genotype grafts and proteomic and transcriptomic analyses. Our results led to identification of the precise genome location of the Rmc locus from which we identified the mutation by sequencing. The rmc phenotype results from a deletion that disrupts five predicted gene sequences, one of which has close sequence match to the CYCLOPS/IPD3 gene identified in legumes as an essential intracellular regulator of both AM and rhizobial symbioses. Identification of two other genes not located at the rmc locus but with altered expression in the rmc genotype is also described. Possible roles of the other four disrupted genes in the deleted region are discussed. Our results support the identification of CYCLOPS/IPD3 in legumes and rice as a key gene required for AM symbiosis. The extensive characterization of rmc in comparison with its ‘parent’ 76R, which has a normal mycorrhizal phenotype, has validated these lines as an important comparative model for glasshouse and field studies of AM and non-mycorrhizal plants with respect to plant competition and microbial interactions with vascular plant roots. Includes supplementary material
    corecore