21 research outputs found

    Identification of antifungal compounds from the Root Bark of Cordia anisophylla J.S. Mill.

    Get PDF
    The dichloromethane extract of the root bark of the Panamanian plant Cordia anisophylla J.S. Mill. (Boraginaceae) presented antifungal activity against a susceptible strain of Candida albicans in a bioautography primary screening. The susceptible strain was used to detect minor active compounds that would not have been detected using a classical approach. In order to identify the antimicrobial compounds, the active extract was fractionated by semi-preparative high-performance liquid chromatography and the fractions were submitted to the antifungal bioassay. This procedure enabled a precise localization of the antifungal compounds directly in the chromatogram of the crude extract and allowed for an efficient, targeted isolation. Four compounds were isolated, one of which is a new natural product. The structures were elucidated using spectroscopic methods. Their antifungal properties were evaluated by determination of the minimum inhibitory quantity and concentration by bioautography and dilution assay against a wild type strain of C. albicans

    microbeMASST: A Taxonomically-informed Mass Spectrometry Search Tool for Microbial Metabolomics Data

    Get PDF
    microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms’ role in ecology and human health

    A Taxonomically-informed Mass Spectrometry Search Tool for Microbial Metabolomics Data

    Get PDF
    MicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without a priori knowledge, will vastly enhance the understanding of microorganisms’ role in ecology and human health

    Integrative Analytical and Computational Strategies for Qualitative and Semi-quantitative Plant Metabolome Characterization

    No full text
    The detailed assessment of the composition of plant-derived products is of primary interest. The metabolites in natural extracts (NE) constitute the metabolome, which can be divided into the core and the specialized metabolome. Plants produce specialized metabolites to ensure their survival in a competitive environment. To assess the composition of NEs, currently validated methods for rigorous annotation and quantification of metabolites require standards. However, among the known metabolites, the availability of commercial reference standards is heavily restricted. Given this limitation, common analytical methods for NE composition assessment focus on studying a few specific and often non-bioactive markers. Liquid chromatography coupled to mass spectrometry (LC-MS) is a method of choice for NE metabolite analysis. Annotating data sets generated by LC-MS systems remains challenging. Dereplication allows focusing efforts on novel compounds, overcoming this challenge by leveraging prior knowledge and computational tools. In the frame of the present thesis, two resources to improve dereplication were developed. The first is the Taxonomically Informed Metabolite Annotation, which allows for better decision-making when multiple structural candidates are suggested by current MS-based annotation tools. The second is LOTUS, an initiative for open knowledge management in natural products research, that provides the largest collection of metabolite-taxon pairs. In addition to annotation, semi-quantitative aspects are crucial for NE composition evaluation. They are needed to document the use of NEs as products and assess the presence and concentration level of potentially toxic compounds. Such information may also provide a rationale to justify specific molecules’ contribution to an extract’s overall bioactivity. Nevertheless, generic methods generating a semi-quantitative assessment of a large panel of metabolites are still lacking. Typically, only a dozen metabolites account for most of the extract’s mass, while hundreds are present in trace amounts. Therefore, effective procedures providing a comprehensive analysis of the metabolome of NEs are needed, further addressing both qualitative and quantitative aspects. This work combines qualitative and semi-quantitative information in an automated manner, by integrating LC-MS-based metabolite profiling with generic universal detection methods. The impact of this strategy is evaluated on public data, collaborations, and well-known plants. Its application to different research questions is illustrated, i.e. through flavoring plants of industrial interest such as Swertia chirayita (Roxb.) H. Karst, containing large quantities of bitter principles. The presented workflow, integrating analytical and computational strategies, aims to make plant metabolomics research more effective for public health, food and beverage safety, as well as fundamental science.L'Ă©valuation dĂ©taillĂ©e de la composition des produits dĂ©rivĂ©s des plantes est d'intĂ©rĂȘt primordial. Les mĂ©tabolites prĂ©sents dans les extraits naturels (NE) constituent le mĂ©tabolome, qui peut ĂȘtre divisĂ© en mĂ©tabolome principal et mĂ©tabolome spĂ©cialisĂ©. Les plantes produisent des mĂ©tabolites spĂ©cialisĂ©s pour assurer leur survie dans un environnement compĂ©titif. Pour Ă©valuer la composition des NE, les mĂ©thodes actuellement validĂ©es pour l'annotation et la quantification rigoureuses des mĂ©tabolites nĂ©cessitent des standards. Cependant, parmi les mĂ©tabolites connus, la disponibilitĂ© de standards de rĂ©fĂ©rence commerciaux est fortement limitĂ©e. Compte tenu de cette limitation, les mĂ©thodes analytiques courantes pour l'Ă©valuation de la composition du NE se fondent sur l'Ă©tude de quelques marqueurs spĂ©cifiques et souvent non bioactifs. La chromatographie liquide couplĂ©e Ă  la spectromĂ©trie de masse (LC-MS) est une mĂ©thode de choix pour l'analyse des mĂ©tabolites de NE. L'annotation des donnĂ©es gĂ©nĂ©rĂ©es par ces systĂšmes LC-MS reste un dĂ©fi. La dĂ©rĂ©plication permet de concentrer les efforts sur des composĂ©s nouveaux, surmontant ce dĂ©fi en tirant parti des connaissances antĂ©rieures et des outils informatiques. Dans le cadre de la prĂ©sente thĂšse, deux ressources visant Ă  amĂ©liorer la dĂ©rĂ©plication ont Ă©tĂ© dĂ©veloppĂ©es. La premiĂšre est l'Annotation de Metabolites InformĂ©e Taxonomiquement, qui permet une meilleure prise de dĂ©cision lorsque de multiples candidats structurels sont suggĂ©rĂ©s par les outils d'annotation actuels basĂ©s sur la MS. Le second est LOTUS, une initiative pour la gestion ouverte des connaissances dans la recherche sur les produits naturels, qui fournit la plus grande collection de paires mĂ©tabolite-taxon. Outre l'annotation, les aspects semi-quantitatifs sont cruciaux pour l'Ă©valuation de la composition des NE. Ils sont nĂ©cessaires pour documenter l'utilisation des NE en tant que produits et Ă©valuer la prĂ©sence et le niveau de concentration de composĂ©s potentiellement toxiques. Ces informations peuvent Ă©galement permettre de justifier la contribution de molĂ©cules spĂ©cifiques Ă  la bioactivitĂ© globale d'un extrait. NĂ©anmoins, il n'existe toujours pas de mĂ©thodes gĂ©nĂ©riques permettant une Ă©valuation semi-quantitative d'un large panel de mĂ©tabolites. Typiquement, seule une douzaine de mĂ©tabolites reprĂ©sentent la majeure partie de la masse de l'extrait, tandis que des centaines sont prĂ©sents Ă  l'Ă©tat de traces. Il est donc nĂ©cessaire de mettre au point des procĂ©dures efficaces permettant une analyse complĂšte du mĂ©tabolome des NE, en tenant compte des aspects qualitatifs et quantitatifs. Ce travail combine des informations qualitatives et semi-quantitatives de maniĂšre automatisĂ©e, en intĂ©grant le profilage des mĂ©tabolites par LC-MS avec des mĂ©thodes de dĂ©tection universelles gĂ©nĂ©riques. L'impact de cette stratĂ©gie est Ă©valuĂ© sur des donnĂ©es publiques, des collaborations et diffĂ©rentes plantes connues. Son application Ă  diffĂ©rentes questions de recherche est illustrĂ©e, par exemple Ă  travers des plantes aromatiques ou sapides d'intĂ©rĂȘt industriel telles que Swertia chirayita (Roxb.) H. Karst, contenant de grandes quantitĂ©s de principes amers. Le flux de travail prĂ©sentĂ©, intĂ©grant des stratĂ©gies analytiques et computationnelles, vise Ă  rendre la recherche en mĂ©tabolomique vĂ©gĂ©tale plus efficace pour la santĂ© publique, la sĂ©curitĂ© des aliments et des boissons, ainsi que pour la science fondamentale.Die detaillierte Bewertung der Zusammensetzung von Pflanzenprodukten ist von vorrangigem Interesse. Die Metaboliten in den natĂŒrlichen Extrakten (NE) bilden das Metabolom, das in Hauptmetabolom und spezialisiertes Metabolom unterteilt werden kann. Pflanzen produzieren spezialisierte Metaboliten, um ihr Überleben in einer kompetitiven Umgebung zu sichern. Um die Zusammensetzung der NE zu bewerten, sind Standards fĂŒr die derzeit validierten Methoden zur strengen Annotation und Quantifizierung von Metaboliten erforderlich. Unter den bekannten Metaboliten ist die VerfĂŒgbarkeit von kommerziellen Referenzstandards jedoch stark eingeschrĂ€nkt. Angesichts dieser EinschrĂ€nkung basieren die gĂ€ngigen Analysemethoden zur Bewertung der NE-Zusammensetzung auf der Untersuchung einiger weniger spezifischer und oft nicht bioaktiver Marker. Die FlĂŒssigchromatographie gekoppelt mit Massenspektrometrie (LC-MS) ist eine Methode der Wahl fĂŒr die Analyse von NE-Metaboliten. Die Annotation der DatensĂ€tze, die von LC-MS-Systemen erzeugt werden, bleibt eine Herausforderung. Die Dereplikation ermöglicht den Fokus auf neue Verbindungen und ĂŒberwindet diese Herausforderung durch die Nutzung von Vorwissen und Computerwerkzeugen. Im Rahmen der vorliegenden Dissertation wurden zwei Ressourcen zur Verbesserung der Dereplikation entwickelt. Die erste ist die Taxonomically Informed Metabolite Annotation, die eine bessere Entscheidungsfindung ermöglicht, wenn mehrere strukturelle Kandidaten von den aktuellen MS-basierten Annotationswerkzeugen vorgeschlagen werden. Das zweite ist LOTUS, eine Initiative fĂŒr offenes Wissensmanagement in der Naturstoffforschung, die die grĂ¶ĂŸte Sammlung von Metabolit-Taxon-Paaren zur VerfĂŒgung stellt. Neben der Annotation sind semiquantitative Aspekte fĂŒr die Bewertung der Zusammensetzung von NE von entscheidender Bedeutung. Sie sind notwendig, um die Verwendung von NE als Produkte zu dokumentieren und das Vorhandensein und die Konzentrationshöhe potenziell toxischer Verbindungen zu bewerten. Diese Informationen können auch dazu dienen, den Beitrag spezifischer MolekĂŒle zur GesamtbioaktivitĂ€t eines Extrakts zu begrĂŒnden. Dennoch gibt es immer noch keine generischen Methoden, die eine semiquantitative Bewertung eines breiten Spektrums von Metaboliten ermöglichen. Typischerweise machen nur ein Dutzend Metaboliten den grĂ¶ĂŸten Teil der Masse des Extrakts aus, wĂ€hrend Hunderte in Spuren vorhanden sind. Daher mĂŒssen effiziente Verfahren entwickelt werden, die eine umfassende Analyse des Metaboloms von NE unter BerĂŒcksichtigung qualitativer und quantitativer Aspekte ermöglichen. In dieser Arbeit werden qualitative und semiquantitative Informationen auf automatisierte Weise kombiniert, indem das LC-MS-basierte Metabolitenprofiling mit allgemeinen universellen Nachweismethoden integriert wird. Die Auswirkungen dieser Strategie werden anhand von öffentlichen Daten, Kollaborationen und verschiedenen bekannten Pflanzen. Ihre Anwendung auf verschiedene Forschungsfragen wird veranschaulicht, z. B. anhand von aromatischen oder sapiden Pflanzen von industriellem Interesse wie Swertia chirayita (Roxb.) H. Karst, die große Mengen an Bitterstoffen enthalten. Der vorgestellte Arbeitsablauf, der analytische und computergestĂŒtzte Strategien integriert, soll die Forschung im Bereich Pflanzenmetabolomik fĂŒr die öffentliche Gesundheit, die Lebensmittel- und GetrĂ€nkesicherheit sowie die Grundlagenwissenschaft effizienter machen.La valutazione dettagliata della composizione dei prodotti di origine vegetale Ăš di interesse primario. I metaboliti presenti negli estratti naturali (NE) costituiscono il metaboloma, che puĂČ essere suddiviso in metaboloma principale e metaboloma specializzato. Le piante producono metaboliti specializzati per garantire la loro sopravvivenza in un ambiente competitivo. Per valutare la composizione dei NE, i metodi attualmente validati per l'annotazione e la quantificazione rigorosi dei metaboliti richiedono degli standard. Tuttavia, dei metaboliti conosciuti, la disponibilitĂ  di standard commerciali di riferimento Ăš fortemente limitata. Data questa limitazione, gli metodi analitici attuali per la valutazione della composizione dei NE si basano sullo studio di pochi marcatori specifici e spesso non bioattivi. La cromatografia liquida-spettrometria di massa (LC-MS) Ăš un metodo di scelta per l'analisi dei metaboliti dei NE. L'annotazione degli dati generati da LC-MS rimane una sfida. La dereplicazione consente di concentrare gli sforzi su composti nuovi, superando questa sfida sfruttando le conoscenze pregresse e i strumenti computazionali. Nel contesto di questa tesi, sono state sviluppate due risorse per migliorare la dereplicazione. Il primo Ăš la Taxonomically Informed Metabolite Annotation, che consente di prendere decisioni migliori quando gli attuali strumenti di annotazione basati sulla MS suggeriscono piĂč candidati strutturali. Il secondo Ăš LOTUS, un'iniziativa per la gestione aperta della conoscenza nella ricerca sui prodotti naturali, che fornisce la piĂč ampia raccolta di coppie metabolita-tassone. Oltre all'annotazione, gli aspetti semiquantitativi sono fondamentali per la valutazione della composizione dei NE. Essi sono necessari per documentare l'uso dei NE come prodotti e per valutare la presenza e il livello di concentrazione di composti potenzialmente tossici. Queste informazioni possono essere utilizzate anche per giustificare il contributo di specifiche molecole alla bioattivitĂ  complessiva di un estratto. Tuttavia, non esistono ancora metodi generici per la valutazione semiquantitativa di un'ampia gamma di metaboliti. In genere, solo una decina di metaboliti costituiscono la maggior parte dell'estratto, mentre centinaia sono presenti in tracce. È quindi necessario sviluppare procedure efficienti per un'analisi completa del metaboloma dei NE, che tenga conto di aspetti sia qualitativi che quantitativi. Questo lavoro combina informazioni qualitative e semi-quantitative in modo automatizzato, integrando la profilazione dei metaboliti basata su LC-MS con metodi generici di rilevazione universale. L'impatto di questa strategia Ăš valutato su dati pubblici, collaborazioni e diverse piante note. La sua applicazione a diverse questioni di ricerca Ăš illustrata, ad esempio attraverso piante aromatiche o sapide di interesse industriale come la Swertia chirayita (Roxb.) H. Karst, contenente grandi quantitĂ  di principi amari. Il flusso di lavoro presentato, che integra strategie analitiche e computazionali, mira a rendere piĂč efficace la ricerca sulla metabolomica vegetale per la salute pubblica, la sicurezza di alimenti e bevande e la scienza di base.</p

    Taxonomically Informed Scoring Enhances Confidence in Natural Products Annotation

    No full text
    &lt;h2&gt;What's Changed&lt;/h2&gt; &lt;ul&gt; &lt;li&gt;Refactoring RT matching (#76) by @Adafede in https://github.com/taxonomicallyinformedannotation/tima-r/pull/83&lt;/li&gt; &lt;li&gt;adding example retention time library (addition to #76, #83) by @Adafede in https://github.com/taxonomicallyinformedannotation/tima-r/pull/84&lt;/li&gt; &lt;li&gt;Refactor for all default paths to be params (#81) by @Adafede in https://github.com/taxonomicallyinformedannotation/tima-r/pull/85&lt;/li&gt; &lt;/ul&gt; &lt;p&gt;&lt;strong&gt;Full Changelog&lt;/strong&gt;: https://github.com/taxonomicallyinformedannotation/tima-r/compare/2.8.2...2.9.0&lt;/p&gt;Please cite the following works when using this software: an

    lotus-processor

    No full text

    Feature-Based Molecular Networking—An Exciting Tool to Spot Species of the Genus Cortinarius with Hidden Photosensitizers

    No full text
    Fungi have developed a wide array of defense strategies to overcome mechanical injuries and pathogen infections. Recently, photoactivity has been discovered by showing that pigments isolated from Cortinarius uliginosus produce singlet oxygen under irradiation. To test if this phenomenon is limited to dermocyboid Cortinarii, six colourful Cortinarius species belonging to different classical subgenera (i.e., Dermocybe, Leprocybe, Myxacium, Phlegmacium, and Telamonia) were investigated. Fungal extracts were explored by the combination of in vitro photobiological methods, UHPLC coupled to high-resolution tandem mass spectrometry (UHPLC-HRMS2), feature-based molecular networking (FBMN), and metabolite dereplication techniques. The fungi C.&nbsp;rubrophyllus (Dermocybe) and C.&nbsp;xanthophyllus (Phlegmacium) exhibited promising photobiological activity in a low concentration range (1–7 ”g/mL). Using UHPLC-HRMS2-based metabolomic tools, the underlying photoactive principle was investigated. Several monomeric and dimeric anthraquinones were annotated as compounds responsible for the photoactivity. Furthermore, the results showed that light-induced activity is not restricted to a single subgenus, but rather is a trait of Cortinarius species of different phylogenetic lineages and is linked to the presence of fungal anthraquinones. This study highlights the genus Cortinarius as a promising source for novel photopharmaceuticals. Additionally, we showed that putative dereplication of natural photosensitizers can be done by FBMN

    Targeted Isolation of Photoactive Pigments from Mushrooms Yielded a Highly Potent New Photosensitizer: 7,7’-Biphyscion

    No full text
    Pigments of mushrooms are a fertile ground of inspiration: they spread across various chemical backbones, absorption ranges, and bioactivities. While looking from a photochemical perspective, we discovered a new bioactivity, i.e., photoactivity. We revealed that singlet oxygen production is a common theme in one group of webcaps (i.e., dermocyboid Cortinarii, formerly called Dermocybe). This photoactivity was explored by bioactivity-based molecular networking and photo-activity guided isolation. As a result, three photosensitizers based on anthraquinone structures were isolated. All three were photochemically characterized and (photo)cytotoxically tested. For one of the three, i.e. (-)-7,7’-biphyscion (1), a promising photoyield of fD= 20 % (lexc = 455 nm) and an excellent photocytotoxicity of approx. 64 nM against A549 lung cancer cell lines (lexc = 468 nm, 9.3 J/cmÂČ) was found, while no effect was observed in the dark. Several molecular biological methods proved the harmlessness of 1 in the dark while showing that apoptosis is dose-dependent induced by 1 under irradiation. Therewith, 1 is a promising candidate for photodynamic therapy, while the photoactivity theme in the subgenus hints towards a yet unthought bioactivity in fungi: photoactivated defense.</p

    Metabolomics in Ecology and Bioactive Natural Products Discovery: Challenges and Prospects for a Comprehensive Study of the Specialised Metabolome

    No full text
    Metabolomics is playing an increasingly prominent role in chemical ecology and in the discovery of bioactive natural products (NPs). The identification of metabolites is a common/central objective in both research fields. NPs have significant biological properties and play roles in multiple chemical-ecological interactions. Classically, in pharmacognosy, their chemical structure is determined after a complex process of isolating and interpreting spectroscopic data. With the advent of powerful analytical techniques such as liquid chromatography-mass spectrometry (LC-MS) the annotation process of the specialised metabolome of plants and microorganisms has improved considerably. In this article, we summarise the possibilities opened by these advances and illustrate how we harnessed them in our own research to automate annotations of NPs and target the isolation of key compounds. In addition, we are also discussing the analytical and computational challenges associated with these emerging approaches and their perspective.</p
    corecore