14 research outputs found

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Enhancing water access monitoring through mapping multi-source usage and disaggregated geographic inequalities with machine learning and surveys

    No full text
    Monitoring safe water access in developing countries relies primarily on household health survey and census data. These surveys are often incomplete: they tend to focus on the primary water source only, are spatially coarse, and usually happen every 5-10 years, during which significant changes can happen in urbanisation and infrastructure provision, especially in sub Saharan Africa. In this work, we present a data-driven approach that utilises and compliments survey based data of water access, to provide context-specific and disaggregated monitoring. The level of access to improved water and sanitation has been shown to vary with geographical inequalities related to the availability of water resources and terrain, population density and socio-economic determinants such as income and education. We use such data and successfully predict the level of water access in areas for which data is lacking, providing spatially explicit and community level monitoring possibilities for mapping geographical inequalities in access. This is showcased by applying three machine learning models that use such geographical data to predict the number of presences of water access points of eight different access types across Uganda, with a 1km by 1km grid resolution. Two Multi-Layer-Perceptron (MLP) models and a Maximum Entropy (MaxEnt) model are developed and compared, where the former are shown to consistently outperform the latter. The best performing Neural Network model achieved a True Positive Rate of 0.89 and a False Positive Rate of 0.24, compared to 0.85 and 0.46 respectively for the MaxEnt model. The models improve on previous work on water point modeling through the use of neural networks, in addition to introducing the True Positive - and False Positive Rate as better evaluation metrics to also assess the MaxEnt model. We also present a scaling method to move from predicting only the relative probability of water point presences, to predicting the absolute number of presences. To challenge both the model results and the more standard health surveys, a new household level survey is carried out in Bushenyi, a mid-sized town in the South-West of Uganda, asking specifically about the multitude of water sources. On average Bushenyi households reported to use 1.9 water sources. The survey further showed that the actual presence of a source, does not always imply that it is used. Therefore it is no option to rely solely on models for water access monitoring. For this, household surveys remain necessary but should be extended with questions on the multiple sources that are used by households.Sanitary EngineeringWater Resource

    Avalanching of the dune face: field observations and equilibrium theory

    No full text
    A field experiment to study dune erosion was conducted on the Sand Engine near Kijkduin, the Netherlands, from November 7th 2021 to January 7th 2022. Two artificial unvegetated dunes were constructed near the high water line, and experienced significant erosion through avalanching during three storms. This paper aims to identify what drives dune erosion through avalanching by using the collected data and equilibrium theory. Results suggest that the cumulative volume eroded through avalanching during a single high water is positively correlated with the profile mismatch between the pre-storm profile and a ‘storm equilibrium profile’, described by a 2/3rd power law, an empirical coefficient A, and the total water level. This mismatch is quantified by calculating the area integral of the profile that is acquired when the upper 35 m of the pre-storm profile is subtracted from the upper 35 m of the equilibrium profile. Avalanching commences when this mismatch becomes larger than approximately 0, after which 1 m3/m of sediment erodes from the dune face for every 3 m3/m mismatch. In addition, during one event avalanching occurred even though the elevation of the total water level did not exceed the initial elevation of the dune toe. This implies that a total water level that exceeds the initial elevation of the dune toe is not a requisite for avalanching and a collision regime to occur, which contradicts conventional definitions of dune erosion regimes. These results have implications on risk assessment of storm conditions on dune erosion.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Coastal EngineeringEnvironmental Fluid Mechanic

    Dune erosion during storm surges: The realdune/reflex experiment at the sand engine

    No full text
    Storm conditions can lead to excessive dune erosion with potential floods as a consequence. Barrier islands and low-lying countries protected by dunes are especially vulnerable to dune erosion. To properly assess the risks these areas face, a clear understanding of the physical processes during dune erosion is required.An international field experiment was conducted to study dune erosion during storm surges from November 6 2021 until January 6 2022. on the Sand Engine. During the Realdune/Reflex experiment, two prototype un-vegetated dunes of 5.5 m high and 150 m long were built just above the high waterline. Due to a different shoreline orientation and nearshore bathymetry, these dunes eroded differently during moderate storm conditions. 3 storms were captured during the campaign.This abstract presents preliminary results of morphodynamic change during these 3 storms, by means of profile changes and erosion volumes.Coastal EngineeringEnvironmental Fluid Mechanic

    The effect of wave obliquity on dune erosion: A field experiment

    No full text
    Storm conditions can lead to excessive dune erosion with potential floods as a consequence. Barrier islands and low-lying countries protected by dunes are especially vulnerable to dune erosion. To properly assess the risks these areas face, a clear understanding of the physical processes during dune erosion is required. One of such processes is the effect of wave obliquity on sediment transport in the surf zone. Classic dune erosion models assume that dune erosion volumes decrease under oblique wave attack, because the time-averaged cross-shore undertow decreases in magnitude and with that offshore directed sediment transport decreases (Steetzel, 1993). More recent process-based erosion models predict an increase in erosion quantities, because the generated longshore currents increase surf zone sediment concentrations, and with that offshore directed sediment transport increases (Den Heijer, 2013). The main objective of this study is to analyse the effect of wave obliquity on dune erosion through a field experiment, by quantifying the effect of the decreasing undertow but increasing alongshore current on sediment concentrations in the surf zone.Coastal EngineeringEnvironmental Fluid MechanicsCivil Engineering & Geoscience

    Continuous Wave Measurements Collected in Intermediate Depth throughout the North Sea Storm Season during the RealDune/REFLEX Experiments

    No full text
    High-resolution wave measurements at intermediate water depth are required to improve coastal impact modeling. Specifically, such data sets are desired to calibrate and validate models, and broaden the insight on the boundary conditions that force models. Here, we present a wave data set collected in the North Sea at three stations in intermediate water depth (6–14 m) during the 2021/2022 storm season as part of the RealDune/REFLEX experiments. Continuous measurements of synchronized surface elevation, velocity and pressure were recorded at 2–4 Hz by Acoustic Doppler Profilers and an Acoustic Doppler Velocimeter for a 5-month duration. Time series were quality-controlled, directional-frequency energy spectra were calculated and common bulk parameters were derived. Measured wave conditions vary from calm to energetic with 0.1–5.0 m sea-swell wave height, 5–16 s mean wave period and W-NNW direction. Nine storms, i.e., wave height beyond 2.5 m for at least six hours, were recorded including the triple storms Dudley, Eunice and Franklin. This unique data set can be used to investigate wave transformation, wave nonlinearity and wave directionality for higher and lower frequencies (e.g., sea-swell and infragravity waves) to compare with theoretical and empirical descriptions. Furthermore, the data can serve to force, calibrate and validate models during storm conditions. Dataset: https://doi.org/10.4121/233f11ff-7804-4777-8b32-92c4606e56d8 Dataset License: CC-BY 4.0.Environmental Fluid MechanicsCoastal Engineerin

    Experimental studies and thermodynamic assessment of the Ba-Mo-O system by the CALPHAD method

    No full text
    Thermodynamic measurements on BaMoO4, BaMoO3 and BaMo3O10 are reported, that served as input for the development of a thermodynamic model of the Ba-Mo-O system using the CALPHAD methodology. The valence states of molybdenum in BaMoO4 and BaMoO3 were confirmed to be VI and IV, respectively, from X-ray Absorption Near Edge Structure Spectroscopy measurements at the Mo K-edge. The heat capacity at low temperatures of these compounds was obtained from thermal-relaxation calorimetry. Phase equilibrium data in the BaMoO4-MoO3 section were also measured, and the transition enthalpy associated with the peritectic decomposition of BaMo3O10 was determined using Differential Scanning Calorimetry. The developed thermodynamic model used the compound energy formalism for intermediate compounds, and an ionic two-sublattice model for the liquid phase. The optimized Gibbs energies were assessed with respect to the known thermodynamic and phase equilibrium data. A good agreement is generally obtained, but a number of ill-defined data were also identified.RST/Reactor Physics and Nuclear Material

    Measurements of dune erosion processes during the RealDune/REFLEX experiments

    No full text
    Nearshore hydro- and morphodynamic data were collected during a field experiment under calm conditions, moderate conditions, and storm conditions with dune erosion in the collision regime. The experiment was conducted on the Sand Engine near Kijkduin, the Netherlands, from October 18, 2021, to January 7, 2022. Two artificial unvegetated dunes were constructed just above the high water line to measure storm erosion and dune impacts from higher water levels and waves. During the experiment, three storms occurred that resulted in significant erosion of both dunes. The collected hydrodynamic data include pressure sensor and velocimeter data along two cross-shore transects. The collected morphodynamic data include bathymetry and topography surveys, optical backscatter sensor data in the inner surf zone, and a continuous cross-shore line-scanning lidar data set of the dune face. This comprehensive data set can be used to (1) study relevant nearshore hydrodynamic and morphodynamic processes that occur during calm conditions, moderate conditions, and storm conditions with dune erosion in the collision regime, and (2) validate existing dune erosion models.Coastal EngineeringEnvironmental Fluid Mechanic

    Beaching and Natural Removal Dynamics of Pelagic Sargassum in a Fringing-Reef Lagoon

    No full text
    Massive quantities of the pelagic brown macroalgae Sargassum spp. (sargassum) have been invading the Caribbean and West African shores since 2011, causing devastating effects on the coastal ecosystem and local economy. Little is known about sargassum beaching dynamics and the capacity of the coastal system to naturally remove beached sargassum. Here, we characterize the temporal variation in arriving and beached sargassum in a reef lagoon using a 5.2-year data set of hourly optical imagery, and identify the governing hydrometeorological conditions. Image classification reveals interannual variability in the start, duration, and intensity of the sargassum arrival season. Arrivals are associated with relatively low energy onshore directed winds and waves, and offshore abundance of sargassum. Furthermore, nearshore sargassum mat size is found to decrease with decreasing wave/wind energy. Once sargassum beaches, a berm of wrack is formed. Natural wrack removal was observed under elevated water levels and increased wave action. Three types of wrack removal were distinguished, depending on the water level (Formula presented.) with respect to the berm crest height (Formula presented.) and berm crest toe (Formula presented.) : gradual berm destruction with gaps developing in the seaward berm edge that grow larger with time (Type I; (Formula presented.)) and abrupt berm destruction with part of the wrack depositing on the upper beach (Type II; (Formula presented.)) or in the dunes (Type III; (Formula presented.)). Higher energy waves activate the reef circulation, which is suspected to flush part of the wrack out of the reef lagoon. We propose a conceptual model of nearshore sargassum dynamics in a reef lagoon system.Environmental Fluid Mechanic
    corecore