4,638 research outputs found

    Behaviour of dairy cows on organic and non-organic farms

    Get PDF
    There is an increasing number of organic dairy farms in the UK. The aim of this study is to compare behaviour of dairy cows on organic and non-organic farms. Twenty organic and 20 non-organic farms throughout the UK were visited over two winters (2004/05 and 2005/06). Organic and non-organic farms were paired for housing type, herd size, milk production traits and location. The number of cows feeding was counted every fifteen minutes for 4.5 h after new feed was available post morning milking. Behaviour at the feed-face was recorded for 60 minutes and aggressive interactions between cows were quantified. Farm type had no effect on numbers of cows feeding. There were more interactions between cows feeding at open feed-faces compared to head-bale barriers. At open feed-faces, there were more interactions on organic farms than non-organic. It is possible that organic cows were hungrier than non-organic cows after the arrival of new feed

    Mars Sample Return Mission: Mars Ascent Vehicle Propulsion Design

    Get PDF
    The aim of this research is to analyze a potential Mars Sample Return (MSR) mission through the study of an optimized design of the Mars Ascent Vehicle (MAV) propulsion system. The main goal of the MSR mission is to return to Earth samples of rocks and dust collected by a rover operating on the surface of Mars, and conveyed to the MAV into an Orbit Sample (OS) canister. The MAV must accomplish an initial ascent phase from the Mars surface to a circular Low Mars Orbit (LMO) with a radius of 500 Km and 30° inclination, and then with its second stage it must circularize into the target LMO where it releases the OS payload. A combination of the MAV and a second vehicle, the Mars Earth Return Vehicle (MERV) orbiter, is required to fulfill the final return phase from Mars to the Earth. After completing three different phases of rendezvous operations, with a final Hohmann Transfer the MERV is able to bring the OS to Earth with its payload. A spreadsheet model enables the evaluation of two different MAV architecture: a two-stage solid rocket, and a two-stage hybrid rocket. The study is based on the main rocket science equations, including the Tsiolkovsky Rocket Equation that calculates the change in velocity Delta V for the two stages of the MAV and the amount of propellant needed for both stages. From the analysis it can be noted that the two-stage hybrid design has significant advantages, firstly in terms of Gross Lift Off Mass GLOM (270 Kg) when compared to the solid solution (355 Kg). The hybrid rocket also has lower mass by up to 60 Kg since it does not require a thermal igloo. Finally, the mass fractions for both stages are comparable, and the required Delta V for the hybrid stages are less than those needed for the solid, allowing considerable fuel savings. The hybrid solution is ultimately preferred, considering the best performance related to the thermal fuel properties enabling the MAV to safely operated in the harsh Martian environment

    No classical limit of quantum decay for broad states

    Full text link
    Though the classical treatment of spontaneous decay leads to an exponential decay law, it is well known that this is an approximation of the quantum mechanical result which is a non-exponential at very small and large times for narrow states. The non exponential nature at large times is however hard to establish from experiments. A method to recover the time evolution of unstable states from a parametrization of the amplitude fitted to data is presented. We apply the method to a realistic example of a very broad state, the sigma meson and reveal that an exponential decay is not a valid approximation at any time for this state. This example derived from experiment, shows the unique nature of broad resonances

    Use of subcutaneous ureteral bypass systems as a bridge to definitive ureteral repair in a cat with bilateral ureteral ligation secondary to complicated ovariohysterectomy

    Get PDF
    A kitten presented with acute kidney injury, bilateral hydronephrosis and proximal hydroureter, three days following bilateral ureteral ligation, during a complicated ovariohysterectomy procedure. Clinical signs were anorexia, lethargy, weakness, hypothermia, nausea, pain and anuria, associated with marked azotaemia, hyperkalaemia and metabolic acidosis. Insufficient response to medical management alone led to emergency surgical placement of bilateral subcutaneous ureteral bypass (SUB) systems, resulting in dramatic improvement in azotaemia and acidosis and resolution of hyperkalaemia. Elective bilateral neoureterocystostomy was performed the next day. The cat was clinically well for three months until the left SUB cystostomy catheter migrated out of the bladder resulting in uroabdomen. At this time, fluoroscopy demonstrated normal ureteral function bilaterally, so both SUBs were removed. Following recovery from surgery the cat has remained clinically normal. This report highlights the possibility of temporary SUB placement as a bridge to definitive ureteral repair in cases of accidental ureteral ligation

    Bone Density and Cross-sectional Geometry of the Proximal Femur Are Bilaterally Elevated in Elite Cricket Fast Bowlers

    Get PDF
    The skeleton of a cricket fast bowler is exposed to a unique combination of gravitational and torsional loading in the form of substantial ground reaction forces delivered through the front landing foot, and anterior-posterior shear forces mediated by regional muscle contractions across the lumbo-pelvic region. The objectives of this study were to compare the hip structural characteristics of elite fast bowlers with recreationally active age-matched controls, and to examine unilateral bone properties in fast bowlers. Dual-energy X-ray absorptiometry of the proximal femur was performed in 26 elite male fast bowlers and 26 normally active controls. Hip structural analysis (GE Lunar; enCORE version 15.0) determined areal bone mineral density (BMD) of the proximal femur, and cross-sectional area, section modulus (Z), cross-sectional moment of inertia, and femoral strength index at the narrow region of the femoral neck. Mean femoral neck and trochanter BMD were greater in fast bowlers than in controls (p  0.05). Elite fast bowlers have superior bone characteristics of the proximal femur, with results inferring enhanced resistance to axial compression (cross-sectional area), and bending (Z) forces, and enhanced strength to withstand a fall impact as indicated by their higher femoral strength index. No asymmetries in hip bone properties were identified, suggesting that both torsional and gravitational loading offer significant osteogenic potential

    Uncertainty in the evolution of northwestern North Atlantic circulation leads to diverging biogeochemical projections

    Get PDF
    The global ocean's coastal areas are rapidly experiencing the effects of climate change. These regions are highly dynamic, with relatively small-scale circulation features like shelf break currents playing an important role. Projections can produce widely diverging estimates of future regional circulation structures. Here, we use the northwestern North Atlantic, a hotspot of ocean warming, as a case study to illustrate how the uncertainty in future estimates of regional circulation manifests itself and affects projections of shelf-wide biogeochemistry. Two diverging climate model projections are considered and downscaled using a high-resolution regional model with intermediate biogeochemical complexity. The two resulting future scenarios exhibit qualitatively different circulation structures by 2075 where along-shelf volume transport is reduced by 70 % in one of them and while remaining largely unchanged in the other. The reduction in along-shelf transport creates localized areas with either amplified warming (+3 ∘C) and salinification (+0.25 units) or increased acidification (−0.25 units) in shelf bottom waters. Our results suggest that a wide range of outcomes is possible for continental margins and suggest a need for accurate projections of small-scale circulation features like shelf break currents in order to improve the reliability of biogeochemical projections.</p

    Sensitivity-analysis method for inverse simulation application

    Get PDF
    An important criticism of traditional methods of inverse simulation that are based on the Newton–Raphson algorithm is that they suffer from numerical problems. In this paper these problems are discussed and a new method based on sensitivity-analysis theory is developed and evaluated. The Jacobian matrix may be calculated by solving a sensitivity equation and this has advantages over the approximation methods that are usually applied when the derivatives of output variables with respect to inputs cannot be found analytically. The methodology also overcomes problems of input-output redundancy that arise in the traditional approaches to inverse simulation. The sensitivity- analysis approach makes full use of information within the time interval over which key quantities are compared, such as the difference between calculated values and the given ideal maneuver after each integration step. Applications to nonlinear HS125 aircraft and Lynx helicopter models show that, for this sensitivity-analysis method, more stable and accurate results are obtained than from use of the traditional Newton–Raphson approach

    Hidden evidence of non-exponential nuclear decay

    Full text link
    The framework to describe natural phenomena at their basics being quantum mechanics, there exist a large number of common global phenomena occurring in different branches of natural sciences. One such global phenomenon is spontaneous quantum decay. However, its long time behaviour is experimentally poorly known. Here we show, that by combining two genuine quantum mechanical results, it is possible to infer on this large time behaviour, directly from data. Specifically, we find evidence for non-exponential behaviour of alpha decay of 8Be at large times from experiments.Comment: 12 pages LaTex, 3 figure

    Searching for keV Sterile Neutrino Dark Matter with X-ray Microcalorimeter Sounding Rockets

    Full text link
    High-resolution X-ray spectrometers onboard suborbital sounding rockets can search for dark matter candidates that produce X-ray lines, such as decaying keV-scale sterile neutrinos. Even with exposure times and effective areas far smaller than XMM-Newton and Chandra observations, high-resolution, wide field-of-view observations with sounding rockets have competitive sensitivity to decaying sterile neutrinos. We analyze a subset of the 2011 observation by the X-ray Quantum Calorimeter instrument centered on Galactic coordinates l = 165, b = -5 with an effective exposure of 106 seconds, obtaining a limit on the sterile neutrino mixing angle of sin^2(2 theta) < 7.2e-10 at 95% CL for a 7 keV neutrino. Better sensitivity at the level of sin^2(2 theta) ~ 2.1e-11 at 95\% CL for a 7 keV neutrino is achievable with future 300-second observations of the galactic center by the Micro-X instrument, providing a definitive test of the sterile neutrino interpretation of the reported 3.56 keV excess from galaxy clusters.Comment: 13 pages, 13 figures, submitted to Ap
    • …
    corecore