16,165 research outputs found

    Time-reversible Born-Oppenheimer molecular dynamics

    Full text link
    We present a time-reversible Born-Oppenheimer molecular dynamics scheme, based on self-consistent Hartree-Fock or density functional theory, where both the nuclear and the electronic degrees of freedom are propagated in time. We show how a time-reversible adiabatic propagation of the electronic degrees of freedom is possible despite the non-linearity and incompleteness of the self-consistent field procedure. Time-reversal symmetry excludes a systematic long-term energy drift for a microcanonical ensemble and the number of self-consistency cycles can be kept low (often only 2-4 cycles per nuclear time step) thanks to a good initial guess given by the adiabatic propagation of the electronic degrees of freedom. The time-reversible Born-Oppenheimer molecular dynamics scheme therefore combines a low computational cost with a physically correct time-reversible representation of the dynamics, which preserves a detailed balance between propagation forwards and backwards in time.Comment: 4 pages, 4 figure

    A change in temperature modulates defence to yellow (stripe) rust in wheat line UC1041 independently of resistance gene Yr36

    Get PDF
    Background Rust diseases are of major importance in wheat production worldwide. With the constant evolution of new rust strains and their adaptation to higher temperatures, consistent and durable disease resistance is a key challenge. Environmental conditions affect resistance gene performance, but the basis for this is poorly understood. Results Here we show that a change in day temperature affects wheat resistance to Puccinia striiformis f. sp tritici (Pst), the causal agent of yellow (or stripe) rust. Using adult plants of near-isogenic lines UC1041 +/- Yr36, there was no significant difference between Pst percentage uredia coverage in plants grown at day temperatures of 18°C or 25°C in adult UC1041 + Yr36 plants. However, when plants were transferred to the lower day temperature at the time of Pst inoculation, infection increased up to two fold. Interestingly, this response was independent of Yr36, which has previously been reported as a temperature-responsive resistance gene as Pst development in adult UC1041 -Yr36 plants was similarly affected by the plants experiencing a temperature reduction. In addition, UC1041 -Yr36 plants grown at the lower temperature then transferred to the higher temperature were effectively resistant and a temperature change in either direction was shown to affect Pst development up to 8 days prior to inoculation. Results for seedlings were similar, but more variable compared to adult plants. Enhanced resistance to Pst was observed in seedlings of UC1041 and the cultivar Shamrock when transferred to the higher temperature. Resistance was not affected in seedlings of cultivar Solstice by a temperature change in either direction. Conclusions Yr36 is effective at 18°C, refining the lower range of temperature at which resistance against Pst is conferred compared to previous studies. Results reveal previously uncharacterised defence temperature sensitivity in the UC1041 background which is caused by a change in temperature and independently of Yr36. This novel phenotype is present in some cultivars but absent in others, suggesting that Pst defence may be more stable in some cultivars than others when plants are exposed to varying temperatures

    Disease activity and cognition in rheumatoid arthritis : an open label pilot study

    Get PDF
    Acknowledgements This work was supported in part by NIHR Newcastle Biomedical Research Centre. Funding for this study was provided by Abbott Laboratories. Abbott Laboratories were not involved in study design; in the collection, analysis and interpretation of data; or in the writing of the report.Peer reviewedPublisher PD

    Integrated health and care systems in England : can they help prevent disease?

    Get PDF
    Objectives: Over the past 12 months, there has been increasing policy rhetoric regarding the role of the NHS in preventing disease and improving population health. In particular, the NHS Long Term Plan sees integrated care systems (ICSs) and sustainability and transformation partnerships (STPs) as routes to improving disease prevention. Here, we place current NHS England integrated care plans in their historical context and review evidence on the relationship between integrated care and prevention. We ask how the NHS Long Term Plan may help prevent disease and explore the role of the 2019 ICS and STP plans in delivering this change. Methods: We reviewed the evidence underlying the relationship between integrated care and disease prevention, and analysed 2016 STP plans for content relating to disease prevention and population health. Results: The evidence of more integrated care leading to better disease prevention is weak. Although nearly all 2016 STP plans included a prevention or population health strategy, fewer than half specified how they will work with local government public health teams, and there was incomplete coverage across plans about how they would meet NHS England prevention priorities. Plans broadly focused on individual-level approaches to disease prevention, with few describing interventions addressing social determinants of health. Conclusions: For ICSs and STPs to meaningfully prevent disease and improve population health, they need to look beyond their 2016 plans and fill the gaps in the Long Term Plan on social determinants

    Detection of gravitational waves from the QCD phase transition with pulsar timing arrays

    Full text link
    If the cosmological QCD phase transition is strongly first order and lasts sufficiently long, it generates a background of gravitational waves which may be detected via pulsar timing experiments. We estimate the amplitude and the spectral shape of such a background and we discuss its detectability prospects.Comment: 7 pages, 5 figs. Version accepted by PR

    Behavioral Phenotyping of Juvenile Long-Evans and Sprague-Dawley Rats: Implications for Preclinical Models of Autism Spectrum Disorders.

    Get PDF
    The laboratory rat is emerging as an attractive preclinical animal model of autism spectrum disorder (ASD), allowing investigators to explore genetic, environmental and pharmacological manipulations in a species exhibiting complex, reciprocal social behavior. The present study was carried out to compare two commonly used strains of laboratory rats, Sprague-Dawley (SD) and Long-Evans (LE), between the ages of postnatal day (PND) 26-56 using high-throughput behavioral phenotyping tools commonly used in mouse models of ASD that we have adapted for use in rats. We detected few differences between young SD and LE strains on standard assays of exploration, sensorimotor gating, anxiety, repetitive behaviors, and learning. Both SD and LE strains also demonstrated sociability in the 3-chamber social approach test as indexed by spending more time in the social chamber with a constrained age/strain/sex matched novel partner than in an identical chamber without a partner. Pronounced differences between the two strains were, however, detected when the rats were allowed to freely interact with a novel partner in the social dyad paradigm. The SD rats in this particular testing paradigm engaged in play more frequently and for longer durations than the LE rats at both juvenile and young adult developmental time points. Results from this study that are particularly relevant for developing preclinical ASD models in rats are threefold: (i) commonly utilized strains exhibit unique patterns of social interactions, including strain-specific play behaviors, (ii) the testing environment may profoundly influence the expression of strain-specific social behavior and (iii) simple, automated measures of sociability may not capture the complexities of rat social interactions

    Lens Spaces and Handlebodies in 3D Quantum Gravity

    Get PDF
    We calculate partition functions for lens spaces L_{p,q} up to p=8 and for genus 1 and 2 handlebodies H_1, H_2 in the Turaev-Viro framework. These can be interpreted as transition amplitudes in 3D quantum gravity. In the case of lens spaces L_{p,q} these are vacuum-to-vacuum amplitudes \O -> \O, whereas for the 1- and 2-handlebodies H_1, H_2 they represent genuinely topological transition amplitudes \O -> T^2 and \O -> T^2 # T^2, respectively.Comment: 14 pages, LaTeX, 5 figures, uses eps
    corecore