54 research outputs found

    The clinical and molecular spectrum of galactosemia in patients from the Cape Town region of South Africa

    Get PDF
    BACKGROUND: The objective of this study was to document the clinical, laboratory and genetic features of galactosemia in patients from the Cape Town metropolitan region. METHODS: Diagnoses were based on thin layer chromatography for galactosuria/galactosemia and assays of erythrocyte galactose-1-phosphate uridyltransferase (GALT) and galactokinase activities. Patients were screened for the common S135L and Q188R transferase gene mutations, using PCR-based assays. Screening for the S135L mutation in black newborns was used to estimate the carrier rate for galactosemia in black South Africans. RESULTS: A positive diagnosis of galactosemia was made in 17 patients between the years 1980 to 2001. All had very low or absent galactose-1-phosphate uridyltransferase (GALT) activity, and normal galactokinase levels. The mean age at diagnosis was 5.1 months (range 4 days to 6.5 months). A review of 9 patients showed that hepatomegaly (9/9), and splenomegaly, failure to thrive, developmental delay, bilateral cataracts (6/9) were the most frequent features at diagnosis. Six had conjugated hyperbilirubinemia. Four experienced invasive E. coli infection before diagnosis. Ten patients were submitted to DNA analysis. All 4 black patients and 2 of mixed extraction were homozygous for the S135L allele, while all 3 white patients were homozygous for the Q188R allele. The remaining patient of mixed extraction was heterozygous for the Q188R allele. The estimated carrier frequency of the S135L mutation in 725 healthy black newborns was 1/60. CONCLUSIONS: In the absence of newborn screening the delay in diagnosis is most often unacceptably long. Also, carrier frequency data predict a galactosemia incidence of approximately 1/14 400 for black newborns in the Cape Metropole, which is much higher than the current detection rate. It is thus likely that many patients go undetected

    Prevalence of H63D, S65C and C282Y hereditary hemochromatosis gene mutations in Slovenian population by an improved high-throughput genotyping assay

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hereditary hemochromatosis (HH) is a common genetic disease characterized by excessive iron overload that leads to multi-organ failure. Although the most prevalent genotype in HH is homozygosity for C282Y mutation of the <it>HFE </it>gene, two additional mutations, H63D and S65C, appear to be associated with a milder form of HH. The aim of this study was to develop a high-throughput assay for <it>HFE </it>mutations screening based on TaqMan technology and to determine the frequencies of <it>HFE </it>mutations in the Slovenian population.</p> <p>Methods</p> <p>Altogether, 1282 randomly selected blood donors from different Slovenian regions and 21 HH patients were analyzed for the presence of <it>HFE </it>mutations by an in-house developed real-time PCR assay based on TaqMan technology using shorter non-interfering fluorescent single nucleotide polymorphism (SNP)-specific MGB probes. The assay was validated by RFLP analysis and DNA sequencing.</p> <p>Results</p> <p>The genotyping assay of the H63D, S65C and C282Y mutations in the <it>HFE </it>gene, based on TaqMan technology proved to be fast, reliable, with a high-throughput capability and 100% concordant with genotypes obtained by RFLP and DNA sequencing. The observed frequency of C282Y homozygotes in the group of HH patients was only 48%, others were of the heterogeneous <it>HFE </it>genotype. Among 1282 blood donors tested, the observed H63D, S65C and C282Y allele frequency were 12.8% (95% confidence interval (CI) 11.5 – 14.2%), 1.8% (95% CI 1.4 – 2.5%) and 3.6% (95% CI 3.0 – 4.5%), respectively. Approximately 33% of the tested subjects had at least one of the three HH mutations, and 1% of them were C282Y homozygotes or compound heterozygotes C282Y/H63D or C282Y/S65C, presenting an increased risk for iron overload disease. A significant variation in H63D allele frequency was observed for one of the Slovenian regions.</p> <p>Conclusion</p> <p>The improved real-time PCR assay for H63D, S65C and C282Y mutations detection is accurate, fast, cost-efficient and ready for routine screening and diagnostic procedures. The genotype frequencies in the Slovenian population agree with those reported for the Central European populations although some deviations where observed in comparison with other populations of Slavic origin. Regional distribution of the mutations should be considered when planning population screening.</p

    Hierarchical Modeling of Activation Mechanisms in the ABL and EGFR Kinase Domains: Thermodynamic and Mechanistic Catalysts of Kinase Activation by Cancer Mutations

    Get PDF
    Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type) and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition and the enhanced stabilization of the active kinase form. The results of this study reconcile current experimental data with insights from theoretical approaches, pointing to general mechanistic aspects of activating transitions in protein kinases

    Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations

    Get PDF
    Most loci identified by GWASs have been found in populations of European ancestry (EUR). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EUR individuals, we identified 5,552 trait-variant associations at p &lt; 5 × 10−9, including 71 novel associations not found in EUR populations. We also identified 28 additional novel variants in ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL-7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations and compared genetic architecture and the effect of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies. Delineation of the genetic architecture of hematological traits in a multi-ethnic dataset allows identification of rare variants with strong effects specific to non-European populations and improved fine mapping of GWAS variants using the trans-ethnic approach

    Pollenern�hrung und Nosemabefall der Honigbiene

    No full text

    Zeit und Raum im Leben der Sammelbiene

    No full text
    corecore