116 research outputs found

    The moisture effect on 223Ra and 224Ra measurements using Mn-cartridges

    Get PDF
    Important processes in the ocean can be evaluated with radioactive nuclides, including radium isotopes. An approach for quantifying radium isotopes in seawater with in-situ pumps has been developed in advance of the GEOTRACES program [1]. Precise measurements of 223Ra and 224Ra by means of the delayed coincidence counting system (RaDeCC) [2] are dependent on the moisture content of the medium [3]. In order to verify the optimum moisture content for this new approach, a set of measurements of the Mn-cartridge standards under different moisture conditions was conducted, as this was done previously for acrylic fiber. At a time, an amount of water equivalent to 5% of the cartridges weight was added, and the activities were determined. The variation of 224Ra activity occurs mainly between 0 to 15% of humidity. Under moisture conditions higher than 15%, the emanation efficiency reaches an optimum plateau until 100% of moisture. This result differs slightly from those found for 224Ra measurements using the acrylic fiber (plateau from 30 to 100 %) [3]. The 223Ra Mn-cartridge standard reaches the plateau under 5% of humidity, and above 50% moisture the activity seems to decrease. Considering the counting error (7%), it is hard to state that the effect of the moisture is critical. However, this decrease can be related to the shorter half-life of the 219Rn compared to the time needed to its diffusion through the water film, which could be a reason for the frequently observed lower efficiency of the 223Ra channel of the RaDeCC system [4]. [1] Henderson et al. (2013) J. Radioanal. Nucl. Chem. 296, 357–362. [2] Moore and Arnold (1996) J. Geophys. Res. 101, 321–1329. [3] Sun and Torgersen (1998) Mar. Chem. 61, 163–171. [4] Charette et al. (2012) Limnol. Oceanogr. 10, 451–463

    Comparison of carbon and opal export rates between summer and spring bloom periods in the region of the Antarctic Polar Front, SE Atlantic.

    Get PDF
    Although primary production in the Antarctic Circumpolar Current is not above the world average and carbon burial rates are low, 70% of the world's opal burial occurs in this zone and it has been suggested that blooms of large diatoms are responsible for this extraordinary situation. Here we compare export fluxes during bloom and steady-state situations near the Antarctic Polar Front in the SE Atlantic.In a previous expedition during the austral spring, we observed the development of a bloom that led to the sudden export of particles (Rutgers van der Loeff et al., 1997). Here we report the results of a second expedition to the same area in summer (Dec-Jan), 3 years later. 234Th was monitored in the surface water and in Rosette casts down to a water depth of 500m as tracer of export production in an intensive sampling program within a box of 275 x 375 km.The distribution of particulate and dissolved 234Th was remarkably constant over time and location. Total (dissolved + particulate) 234Th activities were depleted relative to its parent 238U at the surface (234Th/238U activity ratio approximately 83%), reaching equilibrium at a depth of around 190m. This constant depletion corresponds to a 234Th export rate of 1115 dpm m-2 d-1, 35% of the value observed during the spring bloom

    High particulate organic carbon export during the decline of a vast diatom bloom in the Atlantic sector of the Southern Ocean

    Get PDF
    Carbon fixation by phytoplankton plays a key role in the uptake of atmospheric CO2 in the Southern Ocean. Yet, it still remains unclear how efficiently the particulate organic carbon (POC) is exported and transferred from ocean surface waters to depth during phytoplankton blooms. In addition, little is known about the processes that control the flux attenuation within the upper twilight zone. Here, we present results of downward POC and particulate organic nitrogen fluxes during the decline of a vast diatom bloom in the Atlantic sector of the Southern Ocean in summer 2012. We used thorium-234 (234Th) as a particle tracer in combination with drifting sediment traps (ST). Their simultaneous use evidenced a sustained high export rate of 234Th at 100 m depth in the weeks prior to and during the sampling period. The entire study area, of approximately 8000 km2, showed similar vertical export fluxes in spite of the heterogeneity in phytoplankton standing stocks and productivity, indicating a decoupling between production and export. The POC fluxes at 100 m were high, averaging 26±15 mmol C m−2 d−1, although the strength of the biological pump was generally low. Only <20% of the daily primary production reached 100 m, presumably due to an active recycling of carbon and nutrients. Pigment analyses indicated that direct sinking of diatoms likely caused the high POC transfer efficiencies (~60%) observed between 100 and 300 m, although faecal pellets and transport of POC linked to zooplankton vertical migration might have also contributed to downward fluxes

    231Pa and 230Th in the Arctic Ocean 1991-2015: Changes in the Eurasian and Makarov Basins

    Get PDF
    230Th and 231Pa are produced in sea water by radioactive decay of Uranium isotopes (234U, 235U). Both are particle reactive and are scavenged onto settling particles. As 230Th is more particle reactive than 231Pa, their distribution in the water column and activity ratio give information about particle fluxes and circulation patterns and –intensities. Both particle fluxes and deep water circulation may respond to climatic changes in the Arctic Ocean. This study discusses temporal changes in radionuclide concentration in the context of climate change. We compare results from 1991 [1] 2007 and 2015. We present results of dissolved 231Pa and 230Th activities of samples collected in the Nansen-, Amundsenand Makarov Basins during GEOTRACES sections GIPY11 (2007, 4 stations), GN04 (2015, 10 stations) aboard RV Polarstern. Our discussion of factors controlling the 230Th and 231Pa distribution is supported by, dissolved CFC, dissolved iron and particulate 230Th and 231Pa (3 stations) collected during GEOTRACES section GN04. We find that distributions and concentrations of dissolved 231Pa and 230Th in the central Arctic Ocean have changed significantly since 1991. Dissolved 231Pa concentrations in the Makarov basin decreased by half within less than 20 years. These changes are discussed in the context of environmental changes, such as declining sea ice cover and related increase of particle fluxes or changing deep water circulation. [1] Scholten, J. C., et al. (1995). Deep-Sea Research II 42: 1519- 153

    Carbon export fluxes and export efficiency in the central Arctic during the record sea-ice minimum in 2012. A joint 234Th/238U and 210Po/210Pb study

    Get PDF
    The Arctic sea-ice extent amounted to its record minimum to date in September 2012. Sea-ice decline increases the absorption of solar energy in the Arctic Ocean, affecting primary production and plankton community. How this will modulate the sinking of POC from the ocean surface remains a key question. In this study we use the 234Th/238U and 210Po/210Pb radionuclide pairs to estimate the magnitude of the POC export fluxes in the upper ocean of the central Arctic in summer 2012, covering time scales from weeks to months, respectively. The 234Th/238U proxy reveals that POC fluxes at the base of the euphotic zone were very low (2 ± 2 mmol C m-2 d-1) in August and September. Relationships obtained between the 234Th export fluxes and the phytoplankton community suggest that prasinophytes would have contributed significantly to downward fluxes in late summer, likely via incorporation into sea-ice algal aggregates and zooplankton-derived material. In turn, the magnitude of the depletion of 210Po in the upper water column over the entire study area indicates that particle export fluxes were more relevant before July/August than later in the season. 210Po fluxes and 210Po-derived POC fluxes correlated positively with sea-ice concentration, showing that particle sinking was more important under heavy sea-ice conditions than under partially ice covered regions. Although the POC fluxes were low, a large fraction of primary production (>30%) was exported at the base of the euphotic zone in most of the study area during summer 2012, indicating a high export efficiency of the biological pump in the central Arctic

    Weekly report for R.V. Polarstern expedition ANT-XXIII/1, report no. 1 (19.10.2005), english version

    Get PDF

    Weekly report for R.V. Polarstern expedition ANT-XXIII/1, report no. 4 (13.11.2005), english version

    Get PDF

    Weekly report for R.V. Polarstern expedition ANT-XXIII/1, report no. 3 (27.10.2005), english version

    Get PDF
    • …
    corecore