

O. VALK¹, S. GDANIEC², M.M. RUTGERS VAN DER LOEFF¹, W. GEIBERT¹, W. SMETHIE³, S.B. MORAN⁴, K. LEPORE⁵, R.L. EDWARDS⁶, Y. LU⁷, M. RIJKENBERG⁸

¹ Alfred Wegener Institute, 27570 Bremerhaven, Germany (ole.valk@awi.de, Michiel.Rutgers.v.d.Loeff@awi.de, walter.geibert@awi.de) ² Stockholm University, Department of Geological Sciences, 106 91, Stockholm, Sweden (sandra.gdaniec@nrm.se) ³ Lamont-Doherty Earth Obs., Palisades NY 10964, USA (bsmeth@ldeo.columbia.edu) ⁴ University of Alaska Fairbanks, Fairbanks, AK 99775, USA (sbmoran@alaska.edu) ⁵ Mount Holyoke College, South Hadley, MA 01075, USA (klepore@mtholyoke.edu) ⁶ University of Minnesota, Minneapolis, MN 55455, USA (edwar001@umn.edu) ⁷ Nanyang Technological University, Singapore 639798 (yblu@ntu.edu.s) ⁸ NIOZ Royal Netherlands Institute for Sea Resaerch, Texel, the Netherlands (micharijkenberg@yahoo.com.au)

²³¹Pa and ²³⁰Th in the Arctic Ocean 1991-2015: **Changes in the Eurasian and Makarov Basins**

Introduction

Both particle fluxes and deep water circulation may respond to climate change in the Arctic Ocean. This study discusses temporal changes in dissolved ²³⁰Th and ²³¹Pa concentrations in the context of climate change. We compare results from 1983 [1], 1991 [2] and 2007 and 2015. We present results of dissolved ²³¹Pa and ²³⁰Th collected in the Nansen-, Amundsen- and Makarov Basins of the Arctic Ocean. Our aim is to determine, which factors change ²³⁰Th and ²³¹Pa concentrations and distribution in the central Arctic Ocean over time. We use dissolved CFC-11 and dissolved Fe data from the 2015 GEOTRACES cruise to underpin our hypotheses.

Material and Methods

Samples were taken during RV Polarstern cruises PS70 (2007) and PS94 (2015). Seawater samples of the 2015 cruise were analyzed at AWI following GEOTRACES methods [3]. The samples from 2007 were collected in the same way and analyzed at University of Minnesota following Shen et al. (2003) [4].

²³¹Pa_d [fg/kg]

may be explained by the absence of hydrothermal vents in the Makarov Basin.

and

1000

<u>2000</u> ع

Depth D

5000

Conclusions

1. Temporal changes in Th and Pa concentrations in the Nansen Basin are caused by scavenging removal. Probably by hydrothermal activities at the Gakkel Ridge.

Ventilation and water mass ages

CFC-11 data show higher concentrations in the Amundsen Basin than in the Nansen- or Makarov Basin, indicating younger water mass ages implying more recent ventilation. We think this is controlling the Th and Pa profiles

2. Ventilation of the Amundsen Basin with waters containing low concentrations of ²³⁰Th, ²³¹Pa reduces ²³¹Pa and ²³⁰Th concentrations (FSBW).

3. High concentrations in the Makarov Basin are due to long residence times of the water masses (CFC-11) together with low particle fluxes., maybe due to the absence of hydrothermal vents (Fe-Th).

in the Amundsen Basin: Water with Atlantic origin flows through the Siberian shelves and is entering the Amundsen Basin after undergoing scavenging history at the shelves and slopes. This change is carried downwards by reversible scavenging.

The Makarov Basin water is older than that of the Eurasian Basins. Therefore, Th and Pa can accumulate accordingly.

References

[1] Bacon, M.P., C.-A. Huh, and R.M. Moore, Vertical profiles of some natural radionuclides over the Alpha Ridge, Arctic Ocean. Earth and Planetary Science Letters, 1989. 95: p. 15-22.

[2] Scholten, J.C., M.M. Rutgers van der Loeff, and A. Michel, Distribution of 230Th and 231Pa in the water column in relation to the ventilation of the deep Arctic basins. Deep-Sea Research II, 1995. 42: p. 1519-1531

[3] Anderson, R.F., et al., GEOTRACES intercalibration of 230Th, 232Th, 231Pa, and prospects for 10Be. Limnol. Oceanogr.: Methods, 2012. 10: p. 179-213. [4] Shen, C.-C., et al., Measurement of Attogram Quantities of 231Pa in Dissolved and Particulate Fractions of Seawater by Isotope Dilution Thermal Ionization Mass Spectroscopy. Analytical Chemistry, 2003. 75(5): p. 1075-1079

[5] Edmonds, H.N., Michael, P.J., Baker, E.T., Connelly, D.P., Snow, J.E., Langmuir, C.H., Dick, H.J.B., Mühe, R., German, C.R., Graham, D.W., 2003. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean. Nature 421, 252-256, doi:210.1038/nature01351

[6] Klunder, M.B., et al., Dissolved iron in the Arctic Ocean: Important role of hydrothermal sources, shelf input and scavenging removal. Journal of Geophysical Research: Oceans, 2012. 117(C4)

