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Abstract 23 

The Arctic sea-ice extent reached a record minimum in September 2012. Sea-ice decline 24 

increases the absorption of solar energy in the Arctic Ocean, affecting primary production and 25 

the plankton community. How this will modulate the sinking of particulate organic carbon (POC) 26 

from the ocean surface remains a key question. We use the 234Th/238U and 210Po/210Pb 27 

radionuclide pairs to estimate the magnitude of the POC export fluxes in the upper ocean of the 28 

central Arctic in summer 2012, covering time scales from weeks to months. The 234Th/238U 29 

proxy reveals that POC fluxes at the base of the euphotic zone were very low (2 ± 2 mmol C m-2 30 

d-1) in late summer. Relationships obtained between the 234Th export fluxes and the 31 

phytoplankton community suggest that prasinophytes contributed significantly to downward 32 

fluxes, likely via incorporation into sea-ice algal aggregates and zooplankton-derived material. 33 

The magnitude of the depletion of 210Po in the upper water column over the entire study area 34 

indicates that particle export fluxes were higher before July/August than later in the season. 210Po 35 

fluxes and 210Po-derived POC fluxes correlated positively with sea-ice concentration, showing 36 

that particle sinking was greater under heavy sea-ice conditions than under partially ice covered 37 

regions. Although the POC fluxes were low, a large fraction of primary production (>30%) was 38 

exported at the base of the euphotic zone in most of the study area during summer 2012, 39 

indicating a high export efficiency of the biological pump in the central Arctic. 40 

1 Introduction 41 

Climate change is triggering an unprecedented decline in Arctic sea ice. In September 42 

2012 the sea-ice cover amounted to less than half of its 1979-2000 baseline [Overland and 43 

Wang, 2013]. Such a decrease in ice extent and thickness [Haas et al., 2008] allows more 44 

sunlight to be transmitted through the sea ice, increasing the absorption of solar energy in the 45 

Arctic Ocean [Nicolaus et al., 2012] and affecting sea-ice and upper-ocean ecosystems 46 

[Wassmann, 2011]. Net primary production (NPP) increased by 30% between 1998 and 2012 47 

according to a satellite-based study [Arrigo and van Dijken, 2015]. Yet this kind of approach 48 

does not take into account the productivity of either under-ice phytoplankton nor sea-ice algae, 49 

even though it can be substantial [Gosselin et al., 1997; Fortier et al., 2002; Lee et al., 2010; 50 

Arrigo et al., 2012; Fernández-Méndez et al., 2015]. However, light-driven increments in NPP 51 

will be constrained if nutrient supply to surface waters do not increase considerably by mixing or 52 
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upwelling [e.g. Tremblay et al., 2015]. Besides this, enhanced NPP does not necessarily mean 53 

larger export fluxes of particulate organic carbon (POC) to the deep ocean, since the changing 54 

Arctic scenario favors a phytoplankton community structure based on the smallest cells [Li et al., 55 

2009]. Overall, it remains uncertain how the changes in NPP and plankton community will affect 56 

the sinking of POC from the ocean surface, and in turn contribute to the marine sequestration of 57 

CO2 [Honjo et al., 2010; Anderson and Macdonald, 2015]. 58 

To date, the Arctic Ocean is considered a weak sink for atmospheric CO2, accounting for 59 

~6% of the global oceanic uptake [Gruber et al., 2009]. An essential component of the ocean 60 

carbon sink is the “biological pump” driven by the export of organic particles from the ocean 61 

surface to its interior [Falkowski et al., 1998]. During the productive season, the surface 62 

downward fluxes of POC are widely heterogeneous in the Arctic, reaching higher values (>30 63 

mmol C m-2 d-1) over the shelves [e.g. Cochran et al., 1995b; Lepore et al., 2007] in comparison 64 

to the central Arctic (<5 mmol C m-2 d-1) [e.g. Moran et al., 1997; Cai et al., 2010]. However, in 65 

summer 2012, a widespread deposition of ice algal biomass on the seafloor (>3000 m, median 66 

estimate of 750 mmol C m-2) was observed in the central Arctic associated with rapid ice melt 67 

[Boetius et al., 2013].  68 

The export efficiency is defined as the ratio between export and production, which 69 

indicates the strength of the biological pump [Buesseler and Boyd, 2009]. A recent model study 70 

reports a high annual mean export efficiency of >30% in Arctic waters [Henson et al., 2015]. 71 

Nevertheless, primary production and export data are very scarce, especially in the interior 72 

basins [Gustafsson and Andersson, 2012; Matrai et al., 2013]. Indeed, the temporal mismatch 73 

between the measurement of production and export, combined with the existence of a long lag 74 

period between both processes in the Arctic (30-40 days), make the assessment of the export 75 

efficiency on a seasonal scale difficult [Henson et al., 2015].  76 

The radionuclide pairs 234Th/238U and, to a lesser extent, 210Po/210Pb have been used as 77 

proxies of POC export since the 90s [Buesseler et al., 1992; Shimmield et al., 1995], but very 78 

few studies have used both pairs together [Verdeny et al., 2009; Stewart et al., 2011; Wei et al., 79 

2011; Le Moigne et al., 2013a]. Several authors have recommended the simultaneous use of 80 
234Th/238U and 210Po/210Pb since they cover different time scales, from weeks to months, 81 

respectively, and 234Th and 210Po have different biogeochemical behaviors, providing 82 
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complementary information on POC export fluxes [Friedrich and Rutgers van der Loeff, 2002; 83 

Verdeny et al., 2009; Stewart et al., 2011].  84 

In this study, we aim to estimate the magnitude of the POC fluxes at the bottom of the 85 

euphotic zone and within the upper mesopelagic layer in the central Arctic during the record sea-86 

ice minimum in 2012, as well as identify mechanisms that control particle export by means of 87 
234Th/238U and 210Po/210Pb. The use of both pairs may shed light on the apparent mismatch 88 

between the low 234Th-based export production estimates [Cai et al., 2010] and the benthic 89 

observations of massive sea-ice algae deposits [Boetius et al., 2013] in the central Arctic. It 90 

might also give a hint of the trend that POC fluxes may follow as the sea ice continues to decline. 91 

To this purpose we:  92 

1) Quantify the POC export fluxes at the bottom of the euphotic zone, 50, 100 and 150 m on 93 

short-term and seasonal scales by using the 234Th/238U and 210Po/210Pb pairs. 94 

2) Identify potential relationships between sea-ice conditions, phytoplankton community 95 

and particle export.  96 

3) Assess the export efficiency combining the export estimates at the bottom of the euphotic 97 

zone with daily, weekly and annual NPP estimates. 98 

2 Materials and Methods 99 

2.1 Study area 100 

The sampling was performed from 11 August to 28 September 2012 during the ARK-101 

XXVII/3 expedition in the Eurasian Basin of the central Arctic (2 August-8 October, 2012; R/V 102 

Polarstern; Boetius [2013]). The survey coincided with a new record low of sea-ice cover since 103 

the beginning of satellite imagery in 1978 [Parkinson and Comiso, 2013]. The specific locations 104 

and dates of the sea-ice stations are given in Figure 1 and Table 1. 105 

2.2 Total 234Th/238U and 210Po/210Pb 106 

Total 234Th, 210Po and 210Pb activities were determined from seawater samples collected 107 

using Niskin bottles attached to a CTD rosette. 12-depth vertical profiles from 10 to 400 m were 108 

taken, with the highest resolution in the upper 150 m of the water column.  109 

Total 234Th activities were determined from 4 L of seawater at nine stations. Additionally, 110 
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replicates of deep samples (1500-3000 m) were collected for calibration purposes [Rutgers van 111 

der Loeff et al., 2006]. The samples were processed following the MnO2 co-precipitation 112 

technique [Buesseler et al., 2001] using 230Th as a chemical yield tracer [Pike et al., 2005]. 113 

Briefly, the precipitates were filtered through QMA quartz fiber filters, dried overnight at 50 ºC 114 

and prepared for beta counting. The counting was done on board using low background beta 115 

counters (Risø National Laboratories, Denmark). Samples were re-measured after seven months 116 

to quantify background activities. 230Th recoveries were determined in all filters by inductively 117 

coupled plasma mass spectrometry (ICP-MS) as described in Roca-Martí et al. [2016]. The 118 

average chemical recovery was 94 ± 4% (n = 107). The parent 238U activity was derived from 119 

salinity using the relationship given by Owens et al. [2011]. Stations 4, 5 and 6 had salinities of 120 

30.0-32.5 from 10 to 30 m (n = 15), falling below the range used by Owens et al. [2011]. For 121 

these samples, we also applied the U-salinity relationship given by Not et al. [2012] determined 122 

from sea ice, surface seawater and sea-ice brine samples, covering a wide salinity range (0-135). 123 

A difference of only 1.1% in 238U activity, which is lower than its associated uncertainty (1.9-124 

2.3%), was obtained using the two relationships, validating the use of Owens’s relationship in the 125 

present study. The 234Th activity uncertainties were always ≤6%, which include those 126 

uncertainties associated with counting, detector background and calibration, and ICP-MS 127 

measurements. 128 

Total 210Po and 210Pb activities were determined from 11 L of seawater at seven stations 129 

using the cobalt-ammonium pyrrolidine dithiocarbamate (Co-APDC) co-precipitation technique 130 

[Fleer and Bacon, 1984]. Samples were immediately acidified after collection with HCl to pH <2 131 

and spiked with stable Pb and 209Po as chemical yield tracers. Cobalt nitrate and APDC solutions 132 

were added after at least one day of isotope equilibration. Samples were filtered through 0.2 µm 133 

membrane filters and stored for later processing at the home laboratory. The filters were digested 134 

using concentrated HNO3 and samples were reconstructed with 1 M HCl. 210Po and 210Pb were 135 

separated by auto-deposition of polonium onto silver discs during six hours [Flynn, 1968]. The 136 

silver discs were then counted by alpha spectrometry using passivated implanted planar silicon 137 

(PIPS) alpha detectors (Canberra, USA) and silicon surface barrier (SSB) alpha detectors 138 

(EG&G Ortec, USA). Solutions were re-plated and passed through an anion exchange resin (AG 139 

1-X8) to ensure the complete elimination of polonium from samples [Rigaud et al., 2013]. 140 

Samples were re-spiked with 209Po and stored for 9-11 months for later determination of 210Pb 141 



Post print version of manuscript accepted for Journal of Geophysical Research - Oceans 

 6 

via 210Po ingrowth. At that time samples were plated and counted once more by alpha 142 

spectrometry. 210Pb and 210Po activities at sampling time were calculated applying in-growth, 143 

decay and recovery corrections following Rigaud et al. [2013]. Two aliquots from each sample 144 

were taken before the first and last platings to determine the chemical recovery of stable Pb by 145 

inductively coupled plasma optical emission spectrometry (ICP-OES). The average recovery was 146 

87 ± 9% (n = 83). The activity uncertainties were on average 7% for 210Pb and 16% for 210Po, 147 

which include those uncertainties associated with counting, detector background and 209Po 148 

activity. The larger uncertainties of 210Po are due to the time elapsed between sampling and the 149 

first Po plating (>80 days). All data of total 234Th, 238U, 210Po and 210Pb activities are available at 150 

http://doi.pangaea.de/10.1594/PANGAEA.858790. 151 

2.3 Particulate fraction   152 

Large (>53 µm) particles for analyses of 234Th, 210Po, 210Pb, POC and particulate organic 153 

nitrogen (PON) were collected using in situ pumps (ISP, Challenger Oceanic, UK). Four ISP 154 

were deployed at each station at 25, 50, 100 and 150 m, filtering on average 1500 L. Particles 155 

were retained using 53-µm pore size nylon mesh screens and rinsed with filtered seawater. After 156 

homogenization the sample was subdivided into two aliquots: one was filtered through pre-157 

combusted QMA filters to analyze 234Th, POC and PON on the same filter, and the other aliquot 158 

was filtered through QMA filters to analyze 210Po and 210Pb. Swimmers observed by naked eye 159 

were picked from all samples. The activity of 234Th in particles was measured by beta counting 160 

as described for the water samples. POC and PON were determined with an EuroVector 161 

Elemental Analyzer, pre-treating the filters with diluted HCl [Knap et al., 1996]. The results 162 

were corrected for POC and PON blanks (1.7 ± 0.1 and 0.35 ± 0.06 µmol, respectively), 163 

representing on average 5 and 8% of the POC and PON measurements, respectively. The filters 164 

for 210Po and 210Pb determination were spiked with 209Po and stable Pb, digested using a mixture 165 

of concentrated HNO3, HCl and HF, evaporated to dryness and reconstructed with 1 M HCl. 166 

Samples were processed and measured by alpha spectrometry as described for the water samples. 167 

All data of particulate 234Th, 210Po, 210Pb, and organic carbon and nitrogen concentrations are 168 

available at http://doi.pangaea.de/10.1594/PANGAEA.858790. 169 

http://doi.pangaea.de/10.1594/PANGAEA.858790
http://doi.pangaea.de/10.1594/PANGAEA.858790
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2.4 Pigments 170 

1-L seawater samples were taken from Niskin bottles attached to the CTD rosette from 171 

three to four depths in the upper 30 m at eight stations. The samples were immediately filtered on 172 

GF/F filters, frozen in liquid nitrogen, and stored at -80 °C until further analyses by high 173 

performance liquid chromatography (HPLC) at the home laboratory. The samples were measured 174 

using a Waters 600 controller equipped with an auto sampler (717 plus), a photodiode array 175 

detector (2996), a fluorescence detector (2475) and the EMPOWER software. 50 µL of internal 176 

standard (canthaxanthin) and 1.5 mL acetone were added to each filter vial and then 177 

homogenized for 20 seconds in a Precellys® tissue homogenizer. After centrifugation the 178 

supernatant liquids were filtered through 0.2 µm PTFE filters (Rotilabo) and placed in Eppendorf 179 

cups. 100 µL-aliquots were transferred to the auto sampler (4 °C), premixed with 1 M 180 

ammonium acetate solution in a 1:1 volume ratio just prior to analysis, and injected onto the 181 

HPLC-system. Pigments were analyzed by reverse-phase HPLC using a VARIAN Microsorb-182 

MV3 C8 column (4.6x100 mm) and HPLC-grade solvents (Merck). Solvent A consisted of 70% 183 

methanol and 30% 1 M ammonium acetate, and solvent B contained 100% methanol. The 184 

gradient was modified after Barlow et al. [1997]. Eluting pigments were detected by absorbance 185 

(440 nm) and fluorescence (Ex: 410 nm, Em: >600 nm). Pigments were identified by comparing 186 

their retention times with those of pure standards. Additional confirmation for each pigment was 187 

done by comparing spectra with on-line diode array absorbance spectra between 390 and 750 nm 188 

stored in the library. Pigment concentrations were quantified based on peak areas of external 189 

standards, which were spectrophotometrically calibrated using extinction coefficients published 190 

by Bidigare [1991] and Jeffrey et al. [1997]. The taxonomic structure of the phytoplankton 191 

groups (diatoms, dinoflagellates_1, dinoflagellates_2, haptophytes_3, haptophytes_4, 192 

cryptophytes, prasinophytes_1, prasinophytes_2, pelagophytes and chlorophytes) was calculated 193 

from marker pigment ratios using the CHEMTAX® program [Mackey et al., 1996]. Pigment 194 

ratios were constrained as suggested by Higgins et al. [2011] based on molecular analyses of 18S 195 

rDNA [Kilias et al., 2013] and microscopic examination of representative samples. 196 

Phytoplankton size classes (micro-, nano-, and picoplankton) were estimated according to Uitz et 197 

al. [2006] and Hirata et al. [2011], summarized by Taylor et al. [2011]. Microplankton 198 

corresponded to phytoplankton with size between 20 and 200 µm, nanoplankton between 2 and 199 



Post print version of manuscript accepted for Journal of Geophysical Research - Oceans 

 8 

20 µm and picoplankton <2 µm. The phytoplankton classifications by group and size are 200 

expressed as percentage of total chlorophyll a (Chl-a) biomass. 201 

2.5 Primary production 202 

In situ NPP was measured at eight stations using the 14C uptake method [Steemann 203 

Nielsen, 1952], with minor modifications as described in Fernández-Méndez et al. [2015]. 204 

Seawater, melted sea-ice cores and melt pond samples (one 200 mL sample per environment and 205 

station) were spiked with 0.1 µCi mL-1 of 14C labelled sodium bicarbonate (Moravek 206 

Biochemicals, USA) and incubated for 12 hours at -1.3 °C under different scalar irradiances (0–207 

420 µmol photons m-2 s-1). Depth-integrated in situ rates were calculated for each environment as 208 

a function of the available photosynthetically active radiation (PAR) using the photosynthetic 209 

parameters obtained in the photosynthesis vs. irradiance curves. Water column production was 210 

integrated over the euphotic zone (1% of incoming irradiance) and sea-ice algae production over 211 

the ice thickness.  212 

At the same stations we calculated the integrated amount of NPP that potentially occurred 213 

one and two weeks before sampling using the Central Arctic Ocean Primary Productivity 214 

(CAOPP) model [Fernández-Méndez et al., 2015]. This model calculates NPP from incident 215 

light and sea-ice conditions based on different remote-sensing datasets on the basis of 216 

photosynthesis-irradiance curves measured during the cruise. NPP was calculated for each day 217 

during the 14 days prior to sampling, summed up to integrate values for the one- and two-week 218 

period before sampling, and divided by 7 and 14 days, respectively, to obtain average daily rates 219 

for these two periods.  220 

Annual new NPP was calculated from the nitrate drawdown in the mixed layer since 221 

previous winter at nine stations, as described in Fernández-Méndez et al. [2015]. The annual 222 

total inorganic nitrogen uptake was then transformed to carbon units using the Redfield ratio 223 

106C:16N [Smith et al., 1997; Codispoti et al., 2013], giving annual new NPP estimates for sea 224 

ice and water column during the Arctic productive season. To calculate an average daily rate we 225 

assumed a productive season of 120 days [Gradinger et al., 1999]. Although most of the new 226 

NPP occur before late summer, we note that these estimates may be underestimated mainly for 227 

the first stations sampled in August. This method assumes that lateral input of nitrate from rivers 228 

or shelves is negligible, which should be the case of the present study (>81ºN) due to its 229 
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consumption in Arctic shelf waters [Le Fouest et al., 2013]. Further, this method do not take into 230 

consideration nitrification and upward flux of nitrate, which are assumed to have a relatively 231 

small contribution to the nitrate concentrations in the mixed layer in comparison with the 232 

biological uptake.  233 

3 Results 234 

3.1 Study area 235 

Sea-ice conditions, phytoplankton communities and primary production rates in the study 236 

area are described below and summarized in Table 1. 237 

Table 1: Location and date of the stations sampled during the ARK-XXVII/3 cruise together with information on 238 
oceanographic and sea-ice conditions, Chl-a inventory at 30 m depth, phytoplankton classifications by size and 239 
group, and NPP estimates (see text for further details). The methods used to estimate POC export fluxes in each 240 
station are specified as: Th/U (234Th/238U), Po/Pb (210Po/210Pb) and ST (sediment traps, [Lalande et al., 2014]). 241 

Station 1 2 3 4 5 6 7 8 9 

Polarstern station # PS80/ 
224 

PS80/ 
237 

PS80/ 
255 

PS80/ 
277 

PS80/ 
323 

PS80/ 
335 

PS80/ 
349 

PS80/ 
360 

PS80/ 
384 

Longitude (ºE) 31.19 75.99 110.11 129.83 131.12 123.47 60.97 57.07 17.59 
Latitude (ºN) 84.03 83.92 83.08 82.89 81.93 85.17 87.93 88.80 84.37 

Date (2012) 9-11 
Aug. 

14-16 
Aug. 

20-22 
Aug. 

25-26 
Aug. 

4-5 
Sept. 

7-9 
Sept. 

18-19 
Sept. 

22-23 
Sept. 

28-29 
Sept. 

Methods  
Th/U, 
Po/Pb, 

ST 

Th/U, 
Po/Pb, 

ST 

Th/U, 
Po/Pb, 

ST 

Th/U, 
Po/Pb, 

ST 

Th/U, 
ST 

Th/U, 
Po/Pb, 

ST 

Th/U, 
Po/Pb, 

ST 

Th/U, 
Po/Pb, 

ST 

Th/U, 
ST 

Euphotic zone depth 
(m)a 24 29 30 29 33 29 15 7  

Mixed layer depth (m) 16 20 18 22 20 25 29 30 22 
Sea-ice thickness 

(m)a,b 1.0 1.3 0.9 0.9 0.8 0.7 1.6 1.8 1.2 

Sea ice-concentration 
(%)a,b 80 80 70 80 60 50 100 100 100 

Chl-a inventory 
(mg m-2) 4.8 22.8 8.9 7.0 8.9 11.2 6.1 3.3 2.5 

          Phytoplankton size 
(% Chl-a biomass)          

Microplankton 36 29 38 54 36 14 34 nd 39 
Nanoplankton 22 0 2 13 4 28 44 nd 32 
Picoplankton 42 71 60 33 60 58 22 nd 29 

          Phytoplankton group 
(% Chl-a biomass)          

Diatoms 19 5 4 44 27 3 23 nd 22 
Dinoflagellates_1 0 0 8 2 0 0 0 nd 0 
Dinoflagellates_2 8 0 9 0 2 11 1 nd 12 

Haptophytes_3 21 0 0 4 0 26 61 nd 19 
Haptophytes_4 0 0 8 5 3 3 2 nd 4 



Post print version of manuscript accepted for Journal of Geophysical Research - Oceans 

 10 

Cryptophytes 0 0 1 18 10 0 0 nd 0 
Prasinophytes_1 51 33 8 26 27 35 12 nd 22 
Prasinophytes_2 0 61 61 0 28 0 0 nd 0 

Pelagophytes 0 0 1 1 3 0 0 nd 21 
Chlorophytes 0 0 0 0 0 21 1 nd 0 

          NPP estimates 
(mmol C m-2 d-1)          

In-situ 3.3 2.7 1.3 0.5 5.0 2.3 0.2 0.1 nd 
One week 2.3 2.3 2.2 3.5 1.8 1.9 0.6 0.5 nd 

Two weeks 2.4 2.5 2.2 3.3 2.2 2.3 0.8 0.6 nd 
Annual 3.3 4.8 2.1 2.9 5.6 3.2 11.9 9.9 7.9 

nd = no available data. a Data from Fernández-Méndez et al. [2015]. b Data from Katlein et al. [2014]. 242 

  3.1.1 Oceanographic and sea-ice conditions 243 

Stations were located over the deep Arctic (>3000 m) in the Nansen (stations 1-3 and 9) 244 

and Amundsen Basins (stations 4-8, Figure 1). The sea-ice conditions encountered during the 245 

expedition are described in Katlein et al. [2014]. Stations located north of 87ºN (stations 7 and 8) 246 

had multi-year ice, 1.6-1.8 m thick, while the rest consisted of degraded first-year ice of 0.7-1.3 247 

m. The sea-ice concentration varied from 50 to 80% at stations 1-6, but it was 100% at those 248 

stations visited in mid-late September (stations 7-9, Table 1). The coverage of melt-ponds ranged 249 

from 10 to 50% [Boetius et al., 2013]. The euphotic zone (1% of incoming irradiance) was on 250 

average 25 m deep and was nutrient depleted by phytoplankton consumption: i) silicate-depleted 251 

at stations 1-3; ii) nitrate-depleted at stations 4 and 5; and iii) silicate, nitrate and phosphate-252 

depleted at stations 6-9 [Fernández-Méndez et al., 2015]. The mixed layer was on average 22 m 253 

thick and was defined by the depth where density increased from its surface value to 20% of the 254 

difference between 100 m and the surface [Shaw et al., 2009] using the CTD profiles obtained 255 

during the cruise (doi:10.1594/PANGAEA.802904). The winter mixed layer depth was found at 256 

around 55 m [Fernández-Méndez et al., 2015] above the lower halocline (salinity range: 33.5-257 

34.5) [Rudels, 2009], which reached depths down to 150 m. The potential temperature maximum 258 

indicative of the Atlantic Water core was found between the depth range 180-290 m. Underneath 259 

the Atlantic layer, Arctic intermediate waters as well as deep and bottom waters were located. 260 
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  261 

Figure 1: Location of sea-ice stations sampled during the IceArc cruise (ARK-XXVII/3, August-September 2012) 262 
(red dots). Average sea-ice concentration in September 2012. Contour lines represent the sea-ice extent in February 263 
(red) and July (yellow) 2012. Sea-ice concentration data were obtained from http://www.meereisportal.de (grant: 264 
REKLIM-2013-04) [Spreen et al., 2008]. 265 

3.1.2 Biology 266 

The Chl-a inventories in the upper 30 m of the water column were on average 8.4 ± 6.1 267 

mg m-2, with a maximum at station 2 (22.8 mg m-2) and a minimum at station 9 (2.5 mg m-2). 268 

The phytoplankton community was picoplankton dominated at many stations (1, 2, 3, 5 and 6), 269 

accounting for ~40-70% of the total Chl-a biomass. At those stations prasinophytes were the 270 

most relevant group with a relative biomass up to 95%. Large cells dominated the community at 271 

station 4 with a significant contribution from diatoms (44%), while nanoplankton prevailed at 272 

station 7 with a dominance of haptophytes (63%). Finally, station 9 had a similar biomass 273 

distribution between size classes (Table 1).  274 

The integrated in situ NPP rates in the euphotic zone, sea ice and melt ponds ranged from 275 

0.1 mmol C m-2 d-1 at the northernmost station (8), to 5.0 mmol C m-2 d-1 at the southernmost 276 

station (5). In situ NPP was highest at the picoplankton-dominated stations (>1.3 mmol C m-2 d-277 
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1). The daily NPP estimates during one and two weeks prior to sampling were higher than the in 278 

situ estimates by a factor of 2-7 at stations 3, 4, 7, 8, while they were a factor of 3 lower at 279 

station 5. These estimates were comparable at stations 1, 2 and 6. The annual new primary 280 

production estimates compared well with the in situ, one- and two-week daily estimates from 281 

stations 1 to 6. However, north of 87ºN (stations 7 and 8) the annual estimates were higher than 282 

the average of the other estimates by a factor >20 (~10-12 mmol C m-2 d-1, Table 1).  283 

3.2 Total 234Th/238U and 210Po/210Pb 284 

3.2.1 Seawater profiles 285 

The profiles of the total activities of 234Th and 238U, and 210Po and 210Pb are illustrated in 286 

Figure 2.  287 
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Figure 2: Vertical activity profiles for 234Th (red solid line) and 238U (dotted line) (top panels) and for 210Po (green solid line) and 210Pb (dotted line) (bottom 288 
panels), from 10 to 400 m depth. 238U was derived from salinity [Owens et al., 2011]. 289 
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The specific activities of each radionuclide ranged from 1.54 ± 0.06 to 2.59  ± 0.13 dpm 290 

L-1 for 234Th, 2.04 ± 0.05 to 2.44 ± 0.05 dpm L-1 for 238U, 0.7 ± 0.3 to 5.4 ± 0.5 dpm 100L-1 for 291 
210Po, and 0.84 ± 0.09 to 7.3 ± 0.4 dpm 100L-1 for 210Pb. Within the upper 25 m of the water 292 

column, significant deficits of 234Th (i.e. 234Th/238U <0.9, given uncertainties) were observed at 293 

stations 1, 5 and 6, while significant deficits of 210Po (i.e. 210Po/210Pb <0.8, given uncertainties) 294 

were detected at all the stations. Below 25 m depth, deficits of 234Th were detected at one single 295 

depth at stations 5 and 9 (100-150 m), but deficits of 210Po were found at every station usually at 296 

several depths (30-150 m). Excesses of 234Th (i.e. 234Th/238U >1.1) were not observed at any 297 

profile below 25 m, whereas excesses of 210Po (i.e. 210Po/210Pb >1.2) were observed at four 298 

stations (1, 2, 4 and 6).  299 

Station 1 showed deficits of 234Th and 210Po within the upper 50 m: 11500 ± 2100 and 300 

770 ± 120 dpm m-2, respectively. Station 6 also showed deficits of both isotopes, down to 25 m 301 

for 234Th (160 ± 40 dpm m-2) and 150 m for 210Po (930 ± 200 dpm m-2). At five stations (2, 3, 4, 302 

7 and 8) 234Th was not significantly depleted in the upper water column. On the contrary, at those 303 

stations the integrated 210Po deficits in the upper water column (50-150 m) ranged from 130 ± 304 

150 to 1640 ± 220 dpm m-2. The integrated excesses of 210Po observed at stations 2 (30, 100-300 305 

m) and 4 (15, 30-50, 150, 400 m) exceeded the integrated deficits observed in the surface water. 306 

Finally, at stations 5 and 9 (only 234Th sampling), 234Th was in equilibrium with 238U throughout 307 

the upper 400 m with only a few exceptions. 308 

3.2.2 234Th and 210Po fluxes 309 

The 234Th and 210Po fluxes (FD) are attributed to scavenging of 234Th and 210Po onto 310 

sinking particles. The fluxes were calculated using a steady state (SS) model, neglecting 311 

advective and diffusive fluxes [Buesseler et al., 1992]: 312 

FD = λD(AP − AD) 

where D stands for “daughter” (234Th or 210Po) and P for “parent” (238U or 210Pb, respectively). 313 

λD is the decay constant of 234Th (0.029 d-1) or 
210Po (0.0050 d-1), and (AP – AD) is the integrated 314 

daughter deficit with respect to its parent (dpm m-2). The fluxes calculated down to 25, 50, 100 315 

and 150 m are listed in Table 2. 316 

317 
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Table 2: 234Th and 210Po export fluxes assuming steady state conditions at 25, 50, 100 and 150 m.  318 

Station Depth 
(m) 

234Th fluxes 
(dpm m-2 d-1) 

210Po fluxes 
(dpm m-2 d-1) 

1 

25 200 ± 50 2.1 ± 0.4 
50 330 ± 60 3.9 ± 0.6 

100 230 ± 130 4.3 ± 1.0 
150 280 ± 190 1.8 ± 1.5 

2 

25 40 ± 50 1.6 ± 0.3 
50 70 ± 70 2.4 ± 0.4 

100 100 ± 120 1.3 ± 0.9 
150 200 ± 200 -2.2 ± 1.5 

3 

25 -20 ± 50 0.2 ± 0.3 
50 10 ± 70 0.8 ± 0.4 

100 20 ± 120 2.5 ± 0.7 
150 70 ± 200 4.5 ± 1.0 

4 

25 -70 ± 40 2.2 ± 0.6 
50 -160 ± 60 1.0 ± 0.7 

100 -160 ± 120 0.8 ± 0.8 
150 -220 ± 180 -0.4 ± 1.0 

5 

25 170 ± 40 nd     
50 190 ± 60 nd 

 
 

100 440 ± 110 nd 
 

 
150 660 ± 180 nd     

6 

25 160 ± 40 0.9 ± 0.3 
50 130 ± 60 2.1 ± 0.4 

100 180 ± 120 3.2 ± 0.7 
150 310 ± 190 4.7 ± 1.0 

7 

25 20 ± 50 3.4 ± 0.4 
50 90 ± 70 5.0 ± 0.5 

100 90 ± 140 7.2 ± 0.8 
150 160 ± 200 8.2 ± 1.1 

8 

25 0 ± 60 2.5 ± 0.4 
50 -50 ± 80 3.0 ± 0.5 

100 0 ± 120 3.7 ± 0.9 
150 20 ± 190 4.9 ± 1.1 

9 

25 90 ± 40 nd     
50 60 ± 70 nd 

 
 

100 -110 ± 140 nd 
 

 
150 70 ± 190  nd     

nd = no available data 319 

The 234Th fluxes were negligible or very low at 5 out of 9 stations (2, 3, 4, 7 and 8). At 320 

stations 1, 5 and 6, the 234Th fluxes averaged 175 ± 19 dpm m-2 d-1 at 25 m, 210 ± 100 dpm m-2 d-321 
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1 at 50 m, 280 ± 140 dpm m-2 d-1 at 100 m and 400 ± 200 dpm m-2 d-1 at 150 m. At station 9 the 322 

already low 234Th flux at 25 m (90 ± 40 dpm m-2 d-1) became negligible in deeper waters. The 323 
210Po fluxes were significant at all the stations, averaging 1.8 ± 1.1 dpm m-2 d-1 at 25 m, 2.6 ± 1.5 324 

dpm m-2 d-1 at 50 m, 3 ± 2 dpm m-2 d-1 at 100 m and 3 ± 3 dpm m-2 d-1 at 150 m. The 210Po fluxes 325 

did not decrease with depth at the majority of stations (1, 3, 6, 7 and 8), whereas at stations 2 and 326 

4 the fluxes became negligible at 100-150 m. 327 

3.3. Particulate fraction 328 

Particulate 234Th, 210Po, 210Pb, and organic carbon and nitrogen concentrations in large 329 

particles are given in Table 3, as well as the 210Po/210Pb and molar C/N ratios. 330 

The mean 234Th activities in particles decreased with depth, ranging from ~1 dpm 100L-1 331 

at 25 m to ~0.3 dpm 100L-1 at 150 m. 210Po activities were on average ~0.04 dpm 100L-1 at 25 m 332 

and ~0.02 dpm 100L-1 below that depth, while 210Pb activities were ~0.06 dpm 100L-1 at 25 and 333 

50 m, and ~0.02 dpm 100L-1 at 100 and 150 m. The variation between stations was large, with 334 

deviations from those means of >50% for 234Th, >80% for 210Po and >100% for 210Pb.  Only 335 

about 0.3% of the total activity of 234Th in water, 1.1% of 210Po and 1.7% of 210Pb was associated 336 

with large particles. The maximum particulate activities were found at stations 2 and 3 and the 337 

minimum at stations 7 and 8 (negligible in some instances for 210Po and 210Pb). The 210Po/210Pb 338 

ratios ranged from 0.2 to 6 (average: 1.2 ± 1.4, n = 18), varying considerably between stations 339 

and depths. 340 

The POC and PON concentrations were highest at 25 m, averaging 0.23 ± 0.08 and 0.028 341 

± 0.011 µmol L-1 (n = 8), respectively. Below that depth the concentrations decreased by a factor 342 

of 3. The mean C/N ratio was similar at all the investigated depths, averaging 8.8 ± 1.9 (n = 34). 343 

Table 4 displays the POC/234Th and POC/210Po ratios (C/Th and C/Po) at 25, 50, 100 and 344 

150 m. The average ratios at the different horizon depths ranged from 17 to 40 μmol dpm-1 for 345 

C/Th and from 300 to 1100 μmol dpm-1 for C/Po. The ratios did not change significantly with 346 

depth (Kruskal-Wallis test, p >0.05).  347 
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Table 3: Particulate 234Th, 210Po,210Pb, and organic carbon and nitrogen concentrations, and 210Po/210Pb and molar C/N ratios in particles >53 μm. 348 

Station Depth (m) Part. 234Th  
(dpm 100L-1) 

Part. 210Po  
(dpm 100L-1) 

Part. 210Pb  
(dpm 100L-1) 

210Po/210Pb POC  
(μmol C L-1) 

PON  
(μmol N L-1) 

C/N 
(mol:mol) 

1 

15 0.45 ± 0.03 0.026 ± 0.003 0.0042 ± 0.0012 6 ± 2 0.25 0.038 6.6 
50 nd 

  nd   nd 
  nd 

  nd nd nd 
90 0.335 ± 0.019 0.008 ± 0.003 0.0144 ± 0.0018 0.6 ± 0.2 0.074 0.0092 8.1 

190 0.138 ± 0.008 0.011 ± 0.002 0.0057 ± 0.0011 1.8 ± 0.5 0.034 0.0054 6.3 

2 

25 nd 
  nd   nd   nd 

  nd nd nd 
50 1.71 ± 0.12 0.032 ± 0.006 0.031 ± 0.003 1.0 ± 0.2 0.23 0.034 6.7 

100 1.86 ± 0.12 0.120 ± 0.011 0.073 ± 0.004 1.6 ± 0.2 0.12 0.020 6.3 
150 0.89 ± 0.06 0.050 ± 0.007 0.055 ± 0.004 0.91 ± 0.14 0.042 0.0068 6.1 

3 

25 1.63 ± 0.09 0.066 ± 0.010 0.217 ± 0.010 0.30 ± 0.05 0.27 0.033 8.1 
50 1.60 ± 0.11 0.054 ± 0.014 0.221 ± 0.011 0.24 ± 0.07 0.15 0.020 7.8 

100 0.215 ± 0.012 <0.003 0.039 ± 0.003 - 
  0.032 0.0043 7.4 

150 0.51 ± 0.02 0.035 ± 0.006 0.040 ± 0.004 0.9 ± 0.2 0.087 0.010 8.5 

4 

25 0.55 ± 0.03 0.025 ± 0.003 0.044 ± 0.003 0.57 ± 0.08 0.28 0.029 9.8 
50 0.47 ± 0.03 0.015 ± 0.003 0.031 ± 0.002 0.47 ± 0.12 0.036 0.0056 6.4 

100 0.276 ± 0.010 <0.003   0.0152 ± 0.0016 - 
  0.097 0.014 7.0 

150 0.43 ± 0.02 0.007 ± 0.003 0.023 ± 0.002 0.31 ± 0.15 0.058 0.0078 7.5 

5 

25 1.50 ± 0.10 nd 
  nd 

  nd 
  0.38 0.047 8.0 

50 0.88 ± 0.06 nd 
  nd 

  nd 
  0.14 0.016 8.5 

100 0.414 ± 0.016 nd 
  nd 

  nd 
  0.097 0.011 9.2 

150 0.58 ± 0.03 nd 
  nd 

  nd 
  0.061 0.0075 8.2 

6 

25 1.25 ± 0.08 0.077 ± 0.006 0.106 ± 0.005 0.73 ± 0.06 0.15 0.014 11.1 
50 0.250 ± 0.014 0.006 ± 0.003 0.026 ± 0.002 0.21 ± 0.12 0.025 0.0025 10.1 

100 0.094 ± 0.005 <0.003   0.008 ± 0.002 - 
  0.015 0.0014 10.1 

150 0.096 ± 0.009 0.013 ± 0.003 0.0059 ± 0.0016 2.2 ± 0.8 0.012 0.00090 13.6 

7 

25 0.42 ± 0.02 0.0126 ± 0.0018 0.0076 ± 0.0014 1.7 ± 0.4 0.23 0.023 10.0 
50 0.062 ± 0.007 <0.003   <0.003   - 

  0.029 0.0028 10.6 
100 0.061 ± 0.009 <0.003   0.0040 ± 0.0018 - 

  0.088 0.0074 11.9 
150 0.078 ± 0.006 0.009 ± 0.003 <0.003   - 

  0.036 0.0029 12.4 

8 

25 0.51 ± 0.02 0.009 ± 0.003 0.010 ± 0.002 0.9 ± 0.3 0.16 0.020 8.1 
50 0.286 ± 0.016 0.008 ± 0.003 0.026 ± 0.003 0.31 ± 0.13 0.049 0.0051 9.6 

100 0.133 ± 0.014 <0.003   0.012 ± 0.003 - 
  0.080 0.0070 11.5 

150 0.100 ± 0.008 <0.003   0.0040 ± 0.0018 - 
 

  0.032 0.0040 8.2 

9 

25 1.34 ± 0.10 nd 
  nd 

  nd 
  0.15 0.020 7.4 

50 0.64 ± 0.03 nd 
  nd 

  nd 
  0.088 0.0091 9.7 

100 0.229 ± 0.011 nd 
  nd 

  nd 
  0.069 0.0077 9.0 

150 0.18 ± 0.02  nd     nd     nd     0.059 0.0064 9.3 
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nd = no available data 349 

3.4 POC fluxes 350 

The POC fluxes were calculated multiplying the 234Th and 210Po fluxes derived 351 

from the SS model by the C/Th and C/Po ratios in large particles, respectively (Table 4).  352 

Table 4: Particulate POC/234Th and POC/210Po ratios (C/Th and C/Po), and POC fluxes derived from 353 
234Th and 210Po. 354 

Station Depth 
(m) 

C/Th  
(μmol C dpm-1) 

C/Po  
(μmol C dpm-1) 

POC fluxes (mmol C m-2 d-1) 
234Th-derived 210Po-derived 

1 

15 56 ± 4 970 ± 100 7 ± 2 1.2 ± 0.4 
50 nd 

  
nd 

  
nd 

  
nd 

  90 22.1 ± 1.3 900 ± 400 5 ± 3 4 ± 2 
190 25.0 ± 1.5 330 ± 70 10 ± 6 0.1 ± 0.7 

2 

25 nd 
  

nd 
  

nd 
  

nd 
  50 13.2 ± 0.9 700 ± 120 0.9 ± 0.9 1.7 ± 0.4 

100 6.7 ± 0.5 104 ± 9 0.7 ± 0.8 0.13 ± 0.09 
150 4.7 ± 0.3 83 ± 12 0.9 ± 0.9 -0.19 ± 0.13 

3 

25 16.3 ± 0.9 400 ± 60 -0.4 ± 0.8 0.06 ± 0.14 
50 9.6 ± 0.6 280 ± 80 0.1 ± 0.7 0.23 ± 0.14 

100 14.8 ± 0.8 - 
  

0 ± 2 - 
  150 16.9 ± 0.8 250 ± 40 1 ± 3 1.1 ± 0.3 

4 

25 51 ± 3 1140 ± 140 -4 ± 2 2.5 ± 0.7 
50 7.7 ± 0.4 250 ± 60 -1.2 ± 0.5 0.3 ± 0.2 

100 35.2 ± 1.3 - 
  

-6 ± 4 - 
  150 13.6 ± 0.6 800 ± 400 -3 ± 2 -0.3 ± 0.9 

5 

25 25.1 ± 1.7 nd 
  

4.3 ± 1.0 nd 
  50 15.6 ± 1.0 nd   2.9 ± 0.9 nd   100 23.5 ± 0.9 nd 

  
10 ± 3 nd 

  150 10.5 ± 0.5 nd   7 ± 2 nd   

6 

25 12.2 ± 0.8 197 ± 14 1.9 ± 0.5 0.18 ± 0.07 
50 10.1 ± 0.5 500 ± 200 1.3 ± 0.6 1.0 ± 0.5 

100 15.5 ± 0.8 - 
  

3 ± 2 - 
  150 12.7 ± 1.2 90 ± 20 4 ± 2 0.44 ± 0.13 

7 

25 54 ± 3 1800 ± 300 1 ± 3 6.3 ± 1.1 
50 48 ± 6 - 

  
4 ± 3 - 

  100 150 ± 20 - 
  

10 ± 20 - 
  150 47 ± 4 390 ± 110 7 ± 9 3.2 ± 1.0 

8 

25 32.3 ± 1.4 1900 ± 600 0 ± 2 4.8 ± 1.6 
50 17.1 ± 1.0 600 ± 300 -0.9 ± 1.3 1.8 ± 1.3 

100 60 ± 6 - 
  

0 ± 7 - 
  150 32 ± 3 -     1 ± 6 -     

9 

25 11.2 ± 0.8 nd 
  

1.0 ± 0.5 nd 
  50 13.7 ± 0.8 nd 

  
0.9 ± 0.9 nd 

  100 30.2 ± 1.4 nd 
  

-3 ± 4 nd 
  150 32 ± 4 nd     2 ± 6 nd     

nd = no available data.  355 

The 234Th-derived POC fluxes ranged from negligible to 10 mmol C m-2 d-1 and 356 

averaged 1.3 to 4 mmol C m-2 d-1 at 25, 50, 100 and 150 m. The 210Po-derived POC 357 

fluxes ranged from negligible to 6.3 mmol C m-2 d-1 and were on average from 0.8 to 3 358 

mmol C m-2 d-1 at the same depths. The POC fluxes estimated using the two proxies 359 



Post print version of manuscript accepted for Journal of Geophysical Research - Oceans 

 19 

were not significantly different considering all depths together, or each depth 360 

individually (Wilcoxon test, p >0.05). 361 

4 Discussion 362 

In this study we have used two pairs of radionuclides, 234Th/238U and 363 
210Po/210Pb, as tools to estimate POC fluxes in the Eurasian Basin of the Arctic Ocean in 364 

summer 2012. Deficits of 234Th and 210Po are attributed to particle export, while the 365 

excesses of these radionuclides evidence their release from sinking particles by means 366 

of remineralization or particle disaggregation into the suspended pool. Their 367 

simultaneous application allows integrating a temporal scale over a span of weeks 368 

(234Th mean life = 35 days) to months (210Po mean life = 200 days).  369 

4.1 234Th/238U 370 

 4.1.1 234Th export fluxes 371 

234Th export fluxes were calculated using a SS model because the stations were 372 

not reoccupied during the expedition. Yet in a review study Savoye et al. [2006] did not 373 

find significant differences between the SS and non-steady state (NSS) models at low 374 

flux rates (<800 dpm m-2 d-1), which is the case of the present work.  375 

Significant 234Th fluxes within the upper 150 m of the water column were 376 

obtained at stations 1, 5 and 6, and at stations 7 and 9 only at one single depth (Table 2). 377 

The 234Th fluxes ranged from negligible to 660 dpm m-2 d-1, averaging 120 ± 140 dpm 378 

m-2 d-1 (n = 36). Our results are one order of magnitude lower than the 234Th flux 379 

average reported by Le Moigne et al. [2013b] for the world ocean (1200 ± 900 dpm m-2 380 

d-1; 75-210 m; n = 421). Previous research conducted in the central Arctic, mainly 381 

during summer, has also revealed low export fluxes escaping from the ocean surface 382 

(Figure 3). Cai et al. [2010] reported an average of 90 ± 300 dpm m-2 d-1 (n = 26) in the 383 

most extensive study of 234Th over the central basins to date, and Moran et al. [1997] 384 

and Gustafsson and Andersson [2012] reported similar flux averages of 190 ± 140 dpm 385 

m-2 d-1 (n = 7) and 130 ± 100 dpm m-2 d-1 (n = 3), respectively. Le Moigne et al. [2015] 386 

reported 234Th fluxes of 140 ± 210 dpm m-2 d-1 in the ice covered Fram Strait, which is 387 

also in line with our results. Nevertheless, other studies have reported high 234Th export 388 

fluxes (>2000 dpm m-2 d-1) at specific locations in the Canada Basin [Ma et al., 2005], 389 

although they are more typical of the shelf environment [e.g. Coppola et al., 2002; 390 

Lepore et al., 2007] (Figure 3). Overall, the 234Th flux data presented here and the 391 
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limited data available to date illustrate the central Arctic basins as deserts in terms of 392 

particle export during summer. 393 

 394 
Figure 3: Compilation of 234Th flux data (upper panel) and 234Th-derived POC flux data (lower panel) 395 
from the Arctic Ocean (236 stations) [Cochran et al., 1995b; Moran et al., 1997, 2005; Moran and Smith, 396 
2000; Amiel et al., 2002; Coppola et al., 2002; Baskaran et al., 2003; Chen et al., 2003; Ma et al., 2005; 397 
Trimble and Baskaran, 2005; Lepore et al., 2007; Lalande et al., 2007, 2008; Amiel and Cochran, 2008; 398 
Yu et al., 2010, 2012; Cai et al., 2010; Gustafsson and Andersson, 2012; Le Moigne et al., 2015; this 399 
study]. Black circles indicate the results obtained in this study. The depth horizon taken to calculate the 400 
POC export fluxes ranges from 25 to 200 m. 401 
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4.1.2 234Th-derived POC export fluxes 402 

The mean 234Th-derived POC export fluxes measured in the upper 150 m were 3 ± 3 403 

mmol C m-2 d-1 (n = 34), with a maximum of 10 mmol C m-2 d-1 (Table 4). At the bottom of the 404 

euphotic zone (~25 m) the fluxes ranged from negligible to 7 mmol C m-2 d-1 (average: 2 ± 2 405 

mmol C m-2 d-1, n = 8). These results are in very good agreement with the POC fluxes measured 406 

with cylindrical sediment traps (HydroBios, Kiel, Germany) deployed under the ice during 407 

periods of 24-53 hours from station 1 to 9 [Lalande et al., 2014]. The sediment trap results 408 

ranged from 0.4 to 9 mmol C m-2 d-1 (average: 3 ± 3 mmol C m-2 d-1, n = 9). The in situ NPP 409 

rates showed positive correlations with 234Th fluxes at 25 m (p <0.05; Spearman correlation 410 

coefficient, ρ = 0.83; n = 8), 234Th-derived POC fluxes at 25 m (p <0.05; ρ = 0.78; n = 7) and 411 

sediment trap-derived POC fluxes at 25 m (p <0.05; ρ = 0.83; n = 8), which indicates enhanced 412 

particle fluxes with increasing NPP. Our results also compare well with previous literature values 413 

from sediment traps deployed at 150-175 m north of the Laptev Sea continental margin in 414 

August-September during the years 95/96 and 05/06 (~0.5-2.5 mmol C m-2 d-1) [Fahl and 415 

Nöthig, 2007; Lalande et al., 2009] and 234Th-derived POC fluxes in the central Arctic (Figure 416 

3). Cai et al. [2010] documented very low POC export fluxes (average: 0.2 ± 1.0 mmol C m-2 d-1, 417 

n = 26) across the deep Arctic, suggesting that they were a consequence of low biological 418 

productivity. Our low POC export flux estimates are in good agreement with the low NPP 419 

observed in the present study within the 234Th time window (in situ, one- and two-week 420 

estimates; ≤5 mmol C m-2 d-1; Table 1). 421 

4.1.3 Relationships with phytoplankton community  422 

We did not find any significant relationship between the 234Th data (particulate 234Th 423 

activity, 234Th fluxes and 234Th-derived POC fluxes) and the phytoplankton size structure at the 424 

sampling time, although two correlations were obtained with regards to the phytoplankton 425 

composition. The relative biomass of prasinophytes_1 was positively correlated with 234Th fluxes 426 

(p <0.05; ρ = 0.75; n = 8) and 234Th-derived POC fluxes (p <0.05; ρ = 0.77; n = 7) at 25 m. This 427 

suggests that prasinophytes_1 would have contributed significantly to vertical export fluxes 428 

during the late summer in 2012 when picoplankton, and particularly prasinophytes, were the 429 

predominant group in terms of biomass (Prasinophytes_1 and 2, Table 1). Prasinophytes are 430 

green algae that can be usually found in the eukaryotic picoplankon fraction. A molecular study 431 
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by Metfies et al. [2016] corroborates the biomass dominance of picoplankton in the upper water 432 

column during our expedition and identifies the prasinophyte Micromonas spp. as its major 433 

constituent. Our finding is in line with recent observations that reveal that small cells are 434 

important contributors to POC export fluxes in diverse oceanic regimes [e.g. Richardson and 435 

Jackson, 2007; Lomas and Moran, 2011; Durkin et al., 2015; Mackinson et al., 2015; Puigcorbé 436 

et al., 2015]. Prasinophytes, including Micromonas spp., are common in the central Arctic 437 

[Booth and Horner, 1997; Sherr et al., 2003; Zhang et al., 2015], and are considered to be 438 

among the most abundant photosynthetic cells in pan-Arctic waters [Lovejoy et al., 2007]. 439 

Genetic analyses in trap samples revealed that prasinophytes contributed to downward fluxes in 440 

the Sargasso Sea [Amacher et al., 2013], but to our knowledge, this has not been observed before 441 

in Arctic waters. It is relevant to note that neither molecular nor pigment techniques inform about 442 

whether they sink as single cells or as part of other export pathways. 443 

The pathways by which picoplankton cells can be removed from the ocean surface are 444 

fundamentally: i) zooplankton grazing and subsequent incorporation into fecal pellets [Waite et 445 

al., 2000; Wilson and Steinberg, 2010]; ii) adhesion into mucous nets formed by gelatinous 446 

zooplankton, such as pteropods, and later settling [Noji et al., 1997]; iii) inclusion into marine 447 

snow via particle aggregation, which is enhanced by transparent exopolymer particles (TEP) 448 

[Passow, 2002]. Passive sinking of fecal pellets could be a significant pathway for particle export 449 

in the central Arctic where zooplankton exert a strong grazing pressure on algae, preventing their 450 

biomass accumulation and sedimentation [Olli et al., 2007]. Indeed, the copepod food demand 451 

during our cruise was estimated to be similar to the in situ NPP rates [David et al., 2015], leaving 452 

a small fraction of algae available for direct export. Yet Lalande et al. [2014] estimated that only 453 

up to 7.5% of the POC collected by traps at 25 m consisted of fecal pellets. Trap samples also 454 

consisted of marine snow, debris, appendicularian houses, animal body parts and very sticky 455 

material, even though their relative importance in POC content was not quantified (C. Lalande, 456 

pers. comm.). Copepods clearly dominated the zooplankton community with regards to 457 

abundance, whereas pteropods, ctenophores and appendicularians, which are prone to produce 458 

mucous, represented less than 3-5% of the total zooplankton abundance either beneath the ice 459 

[David et al., 2015] or within the upper 50 m [Ehrlich, 2015]. However, ctenophores and 460 

appendicularians dominated the under-ice zooplankton biomass at some stations, which could 461 

have contributed notably to the export of mucous (C. David, pers. comm.). Moreover, sea-ice 462 
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algal aggregates of the centric diatom Melosira arctica and pennate diatoms were observed at all 463 

the stations [Fernández-Méndez et al., 2014]. They reached abundances up to 16 ind/m2 and 464 

extraordinary sizes (diameter mean: 2.1-4.1 cm), although they showed a highly patchy 465 

distribution [Katlein et al., 2014]. The aggregates were associated with mucous matrices that 466 

increased their stickiness and, at the same time, their predisposition to aggregation [Fernández-467 

Méndez et al., 2014]. Indeed, Melosira arctica was intercepted using sediment traps deployed at 468 

25 m at some stations [Lalande et al., 2014], confirming that it was part of the sinking pool. 469 

Taken all together, sea-ice algal aggregates and zooplankton-derived material might have acted 470 

as carriers of picoplankton cells from the ocean surface to depth (Figure 4b). 471 

4.2 210Po/210Pb 472 

 4.2.1 210Po and 210Pb activities 473 

210Po activities were lower than those of 210Pb at every station in the upper 50-150 m, 474 

indicating export driven by sinking particles, while excess 210Po was observed at several depths 475 

throughout the upper 400 m at stations 2 and 4, suggesting remineralization or particle 476 

disaggregation (Figure 2). At stations 2 and 4 the integrated excess surpassed the integrated 477 

deficit at 150 m and below, which can be explained by: i) a previous large export event that 478 

occurred at the study sites, and/or ii) advection of waters that were enriched in 210Po as 479 

consequence of a previous export event [Stewart et al., 2007]. Thus, the assumption of SS and/or 480 

neglecting the advective term would have added uncertainty to our flux estimates of 210Po. We 481 

note that the 210Po flux estimates are subject to be affected by NSS conditions or advection 482 

transport processes to a larger extent than the 234Th flux estimates due to the longer half-life of 483 
210Po. 484 

Very few studies have investigated the distribution of 210Po and/or 210Pb in the Arctic 485 

water column [Moore and Smith, 1986; Cochran et al., 1995a; Smith and Ellis, 1995; Roberts et 486 

al., 1997; Smith et al., 2003; Lepore et al., 2009; Chen et al., 2012]. The 210Pb and 210Po 487 

activities presented here are comparable to the wide activity range reported by those studies, 488 

including shelf and basin areas.  489 

In the Arctic, sea ice intercepts and accumulates atmospheric fluxes of chemical species, 490 

such as 210Pb, during its transit through the ocean [Masqué et al., 2007; Cámara-Mor et al., 491 

2011] and, therefore, sea ice melting may increase 210Pb activities in surface waters where that 492 
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occurs [Roberts et al., 1997; Masqué et al., 2007; Chen et al., 2012]. One might wonder whether 493 

sea ice melting may significantly impact the 210Po and 210Pb activities in seawater and, thus, 494 

affect the use of the 210Po proxy. Data on 210Pb and 210Po activities in entire sea-ice cores 495 

collected during the same expedition (results not shown) show that the 210Po/210Pb ratios were 496 

≤0.5, indicating 210Pb enrichment in sea ice, and consistent with the dominance of first-year ice 497 

[Masqué et al., 2007]. Given the inventories of both isotopes in sea-ice cores, even with 498 

complete melting of sea ice, the 210Po/210Pb ratio in the upper 25 m of the water column would 499 

have not changed or would have decreased as much as 10%. Since this change is relatively small, 500 

we are confident that the principal cause of the 210Po deficit in the upper water column was its 501 

preferential removal via particle scavenging with respect to 210Pb.   502 

4.2.2 210Po export fluxes 503 

The 210Po export fluxes in the upper 150 m ranged from negligible to 8.2 dpm m-2 d-1, 504 

averaging 3 ± 2 dpm m-2 d-1 (n = 28, Table 2). The fluxes obtained in this study are very low in 505 

comparison to other studies conducted in other regions of the world ocean [Shimmield et al., 506 

1995; Kim and Church, 2001; Friedrich and Rutgers van der Loeff, 2002; Murray et al., 2005; 507 

Stewart et al., 2007a; Buesseler et al., 2008; Verdeny et al., 2008; Le Moigne et al., 2013a], 508 

which reported fluxes from 5 to >100 dpm m-2 d-1. However, the 210Po fluxes were significant at 509 

every station and at most of the investigated depths, in contrast to 234Th fluxes, which were only 510 

measurable at more than one depth at three stations (Table 2). Given the time scales of both 511 

tracers, 210Po would track particle export for the entire productive season, whereas 234Th 512 

distribution misses events that occurred >1 month before sampling. Thus, the more common 513 
210Po depletion than that of 234Th in the upper water column suggests that the magnitude of 514 

particle export fluxes was more important before July/August 2012 than in the weeks prior to 515 

and during the sampling (Figure 4). 516 
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 517 
Figure 4: Scheme of the magnitude and composition of the particle fluxes in the central Arctic during the early (a) and late summer (b) in 2012 based on results 518 
from the present study and others [Boetius et al., 2013; Lalande et al., 2014; David et al., 2015; Fernández-Méndez et al., 2015] (see sections 4.1 and 4.2 for 519 
further details). Symbols are not drawn to scale. 520 
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 Boetius et al. [2013] revealed the presence of vast deposits of sea-ice algal aggregates on 521 

the seafloor at the majority of stations, which would have been exported from the ocean surface 522 

earlier in the season, particularly before June at stations 4, 5 and 6 as suggested by the large body 523 

size and fecundity of the deep-sea holothurians that fed on the algae. The aggregates were mainly 524 

composed of Melosira arctica [Boetius et al., 2013] that can form long strands hanging from the 525 

ice bottom, sometimes up to 6 m long [Melnikov and Bondarchuk, 1987], allowing a rapid 526 

sinking throughout the water column once detached. Boetius et al. [2013] estimated that algae 527 

covered up to 10% of the seafloor by means of high-resolution pictures, accounting for a median 528 

of 750 mmol C m-2 (± 50%). This POC inventory of algae was obtained by applying a cell 529 

volume to carbon ratio (0.15 pg C μm3) and a fixed thickness of the algal cover (0.01 m). This 530 

supports the 210Po evidence that the peak of export in the study area occurred in early summer 531 

and sheds light on the composition of a major part of the sinking pool (Figure 4a). It was 532 

estimated that diatoms were responsible for at least 45% of the total primary production in 2012 533 

[Boetius et al., 2013], indicating that the phytoplankton community varied over the productive 534 

season, since diatoms did not contribute much to the Chl-a biomass during our cruise (~20%, 535 

Table 1), when surface waters were silicate-depleted in most of the study area. Previous studies 536 

with sediment traps also revealed that highest fluxes in the central Arctic occur mainly in June-537 

August [Fahl and Nötig 2007, Lalande et al. 2009]. 538 

4.2.3 Relationships with sea-ice conditions 539 

There were significant relationships between the sea-ice conditions and the 210Po-derived 540 

fluxes. Sea-ice concentration was positively correlated with both 210Po fluxes (p <0.01; ρ = 0.92; 541 

n = 7) and 210Po-derived POC fluxes (p <0.05; ρ = 0.91; n = 6) at 25 m. Indeed, the stations 542 

located north of 87ºN and covered by multi-year ice (stations 7 and 8) showed the strongest 543 

depletion of 210Po within the upper 400 m (Figure 2), and the highest annual NPP rates (Table 1) 544 

and seafloor algal coverage [Boetius et al., 2013]. This suggests that primary production and 545 

particle export were more important under heavy sea-ice conditions than under partially ice 546 

covered stations and first-year ice, also suggesting that 210Po tracked, to some extent, the massive 547 

algal export that occurred earlier in 2012. On the contrary, at stations with heavy sea-ice 548 

conditions we found the minimum in situ NPP rates (Table 1) and 234Th in equilibrium with 238U 549 

throughout the upper water column (Figure 2), indicating low or negligible primary production 550 
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and particle export fluxes during the late summer. 551 

The results presented here, combined with those from Boetius et al. [2013], show that the 552 

central Arctic underwent significant changes during the productive season in terms of primary 553 

production, phytoplankton composition and export fluxes during the record low of sea ice in 554 

2012. This has implications for the use of 210Po as a tracer: the depth distribution of total 210Po 555 

activity likely changed with time (NSS conditions) and the sinking material collected during the 556 

survey probably did not cause the observed 210Po depletion in the upper water column. Actually, 557 
210Po activities in large particles collected at the time of sampling were inversely correlated with 558 
210Po export fluxes at 25 m (p <0.05; ρ = -0.89; n = 6). The SS model would tend to smooth out 559 

episodic export events that took place earlier in the season, and hence underestimate the mean 560 
210Po fluxes and 210Po-derived POC fluxes on a seasonal scale. On the other hand, we measured 561 

C/Po ratios in particles that fall in the upper range of previous values (see review by Verdeny et 562 

al. [2009]). Stewart et al. [2007] showed that C/Po ratios varied according to the sinking material 563 

composition as follows: degraded material > fresh phytoplankton > fecal pellets. We also found 564 

in some instances particulate 210Po/210Pb ratios below one (Table 3), which is inconsistent with 565 

the 210Po deficiency observed in surface waters. Particle types that may potentially explain low 566 
210Po/210Pb ratios could be: particles remineralized by chemical and biological processes [Stewart 567 

et al., 2007b], fecal material [Stewart et al., 2005; Rodriguez y Baena et al., 2007], picoplankton 568 

aggregates [Stewart et al., 2010], and substrates rich in transparent exopolymer particles 569 

[Quigley et al., 2002]. Overall, if the sinking pool responsible for 210Po scavenging had different 570 

C/Po ratios with respect to that collected at the sampling time, the 210Po-derived POC fluxes 571 

obtained in this study would not be fully representative of the fluxes that occurred in the 572 

productive season in 2012.  573 

 4.3 Export efficiency 574 

We have estimated the export efficiency by dividing the POC export fluxes derived from 575 
234Th and 210Po at 25 m (i.e. ~bottom of the euphotic zone) by different estimates of NPP that 576 

encompass daily, weekly and annual time scales (Table 5).  577 
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Table 5: Export efficiency according to the 234Th and 210Po proxies estimated using different estimates of daily NPP (in situ, one and two weeks before sampling 578 
and annual new primary production; see text for further details).   579 

Station 
Export efficiency (%) 

In situ One week Two weeks Annual 

Th proxy             
1a >100   >100   >100   >100   
2b 30 ± 40 40 ± 40 30 ± 40 20 ± 20 
3 0   0   0   0   
4 0   0   0   0   
5 90 ± 20 >100   >100   77 ± 18 
6 80 ± 20 100 ± 30 80 ± 20 60 ± 17 
7 >100   >100   >100   10 ± 20 
8 0   0   0   0   
9 nd   nd   nd   13 ± 6 

Po proxy             
1a 37 ± 12 53 ± 17 50 ± 16 37 ± 12 
2b 64 ± 16 74 ± 19 67 ± 17 36 ± 9 
3 5 ± 11 3 ± 6 3 ± 6 3 ± 7 
4 >100   70 ± 20 80 ± 20 90 ± 30 
5 nd   nd   nd   nd   
6 8 ± 3 9 ± 4 8 ± 3 6 ± 2 
7 >100   >100   >100   53 ± 9 
8 >100   >100   >100   48 ± 16 
9 nd   nd   nd   nd   

nd = no available data. The values in italics have relative uncertainties ≥100%. a POC fluxes used to estimate the export efficiency were measured at 15 m instead 580 
of 25 m. b POC fluxes used to estimate the export efficiency were measured at 50 m instead of 25 m. 581 



Post print version of manuscript accepted for Journal of Geophysical Research - Oceans 

 29 

Considering the in situ NPP rates, the export efficiency varied widely over the study site, 582 

from 0 to >100%, averaging 50 ± 50% (n = 8) and 60 ± 40% (n = 7) for the 234Th and 210Po 583 

proxies, respectively. The export efficiency calculated using the fluxes measured with sediment 584 

traps [Lalande et al., 2014] was >100% at 6 out of 8 stations. Export efficiencies over 100% 585 

suggest that primary production that occurred earlier in the season contributed to the export 586 

fluxes measured (i.e. temporal decoupling between production and export). In order to cover 587 

longer time scales of NPP, we have also used estimates that integrate one and two weeks before 588 

sampling and the entire productive season (see section 3.1.2). The increase in daily NPP 589 

observed between the in-situ and the weekly estimates at stations 3, 4, 7 and 8, only changed 590 

significantly the export efficiency at station 4 (210Po proxy), obtaining estimates of ~70% (Table 591 

5). Export efficiencies over 100% were still observed in several instances, indicating that the lag 592 

between production and export was longer than two weeks. On the contrary, the export 593 

efficiencies decreased by about 40% applying the annual NPP estimates (234Th: 30 ± 40%, n = 9; 594 
210Po: 40 ± 30%, n = 7) and were mostly below 100%, except for 234Th at station 1. In contrast to 595 
234Th, 210Po fluxes and 210Po-derived POC fluxes at 25 m showed a positive correlation with the 596 

integrated deficits of nitrate found in the upper water column [Fernández-Méndez et al., 2015] (p 597 

<0.05; ρ = 0.83; n = 6), which are used to estimate the annual new NPP rates [e.g. Codispoti et 598 

al., 2013]. This confirms that the 210Po proxy covered the productive season better than 234Th, 599 

and suggests that consumption of nitrate resulted in the increase in export production. Thus, the 600 
210Po-derived POC fluxes and annual NPP estimates can be useful to assess the seasonal strength 601 

of the biological pump, allowing to overcome the temporal decoupling between production and 602 

export, which is especially long in Arctic waters conforming to a global biogeochemical model 603 

[Henson et al., 2015].  604 

The export efficiency according to the annual NPP and the 210Po-derived POC fluxes is 605 

illustrated in Figure 5. Only two locations showed export efficiencies <10% (stations 3 and 6, 606 

Table 5), which are those typically found in the world ocean [Buesseler, 1998]. Export 607 

efficiencies >30% (average: 50 ± 20%, n = 5) were found at the other stations, which is in good 608 

agreement with those reported by Gustafsson and Andersson [2012] in the Eurasian Basin 609 

(average: 34 ± 8%, n = 3) and Chen et al. [2003] in the Canada Basin (26%, n = 1) applying 610 
234Th-derived POC fluxes and in situ NPP rates. Our estimates are also similar to the 234Th-611 

derived export efficiencies of ~30-40% reported for Chukchi shelf, slope and basin stations in 612 



Post print version of manuscript accepted for Journal of Geophysical Research - Oceans 

 30 

summer [Moran et al., 2005; Lepore et al., 2007]. Although only a limited set of observations of 613 

export efficiency is available in the central Arctic, overall they point to high export efficiencies 614 

as also indicated by Henson et al. [2015]. The assessment of the export efficiency in the central 615 

Arctic deserves more attention to better understand its role as an export regime in a climate 616 

change framework. Observations of strong aggregation and rapid algal falls in the central Arctic 617 

[Boetius et al., 2013; Katlein et al., 2014] suggest a export system that works differently than in 618 

most of the world ocean.  619 

 620 

Figure 5: 210Po-derived POC export fluxes at 25 m vs. annual new primary production reported in Fernández-621 
Méndez et al. [2015]. Solid lines indicate the export efficiency. 622 

5 Conclusions 623 

We have used concurrently the 234Th/238U and 210Po/210Pb proxies to estimate POC fluxes in 624 

the central Arctic during the record sea-ice minimum in 2012. The main findings of the present 625 

work are: 626 

1) 234Th reveals that POC fluxes at the bottom of the euphotic zone were very low (2 ± 2 627 

mmol C m-2 d-1) in August/September, which is in good agreement with results obtained 628 

using sediment traps (3 ± 3 mmol C m-2 d-1) deployed at the same locations [Lalande et 629 

al., 2014]. The positive relationships found between prasinophytes_1 and 234Th and 630 
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234Th-derived POC fluxes suggest that picoplankton contributed significantly to 631 

downward fluxes in late summer. 632 

2) In contrast to 234Th, the upper water column was depleted in 210Po over the entire study 633 

area, indicating that particle export fluxes were higher before July/August than in the 634 

weeks prior to and during the survey.  635 

3) The positive relationships obtained between sea-ice concentration and 210Po and 210Po-636 

derived POC fluxes show that particle sinking was greater under heavy sea-ice conditions 637 

than under partially ice covered areas. Further, the strongest 210Po deficits in the water 638 

column coincided with the highest seafloor coverage of algae reported by Boetius et al. 639 

[2013], suggesting that 210Po tracked, to some extent, the massive algal export that 640 

occurred earlier in the season.  641 

4) Although the POC fluxes were low, a large fraction of primary production (>30%) was 642 

exported at the base of the euphotic zone in most of the study area, according to 210Po-643 

derived POC fluxes and annual NPP estimates. Seasonal estimates of primary production 644 

and export would be very helpful in characterizing the role of the Arctic biological pump 645 

in the context of climate change.  646 

We encourage future studies applying radionuclide proxies to consider NSS conditions and 647 

follow the trend of C/Th and C/Po ratios with time to better constrain the POC fluxes in the 648 

Arctic. Further, the simultaneous use of sediment traps would allow the determination of the 649 

particle flux composition, which has been pointed out as a crucial factor shaping the biological 650 

pump efficiency [e.g. Mackinson et al., 2015; Puigcorbé et al., 2015; Roca-Martí et al., 2016]. 651 
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