10 research outputs found

    SOST expression is restricted to the great arteries during embryonic and neonatal cardiovascular development.

    No full text
    Spatial-temporal regulation of bone morphogenetic protein (BMP) and Wnt activity is essential for normal cardiovascular development, and altered activity of these growth factors causes maldevelopment of the cardiac outflow tract and great arteries. In the present study, we show that SOST, a Dan family member reported to antagonize BMP and Wnt activity, is expressed within the medial vessel wall of the great arteries containing smooth muscle cells. The ascending aorta, aortic arch, brachiocephalic artery, common carotids, and pulmonary trunk were all associated with SOST expressing smooth muscle cells, while the heart itself, including the valves, and more distal arteries, that is, pulmonary arteries, subclavian arteries, and descending aorta, were negative. SOST was expressed from embryonic day 15.5 up to the neonatal period. SOST expression, however, did not correspond with inhibition of Smad-dependent BMP activity or beta-catenin-dependent Wnt activity in the great arteries. Activity of both signaling pathways was already down-regulated before induction of SOST expression

    Wnt but not BMP Signaling is involved in the Inhibitory Action of Sclerostin on BMP-Stimulated Bone Formation

    Get PDF
    Sclerostin is an osteocyte‐derived negative regulator of bone formation. It inhibits BMP‐stimulated bone formation both in vitro and in vivo but has no direct effect on BMP signaling. Instead, sclerostin inhibits Wnt signaling that is required for BMP‐stimulated osteoblastic differentiation. Introduction : Sclerostin is a member of the Dan family of glycoproteins of which many members have been reported to antagonize BMP activity. Sclerostin has been shown to inhibit BMP‐stimulated bone formation, but its mechanism of action seems to be different from classical BMP antagonists. In this study, we investigated the mechanism by which sclerostin inhibits BMP‐stimulated bone formation. Materials and Methods : DNA electroporation of calf muscle of mice using expression plasmids for BMP and sclerostin was used to study the effect of sclerostin on BMP‐induced bone formation in vivo. Transcriptional profiling using microarrays of osteoblastic cells treated with BMP in the absence or presence of sclerostin was used to find specific growth factor signaling pathways affected by sclerostin. The affected pathways were further studied using growth factor–specific reporter constructs. Results : BMP‐induced ectopic bone formation in calf muscle of mice was prevented by co‐expression of sclerostin in vivo. Transcriptional profiling analysis of osteoblastic cultures indicated that sclerostin specifically affects BMP and Wnt signaling out of many other growth signaling pathways. Sclerostin, however, did not inhibit stimulation of direct BMP target genes. Furthermore, we did not obtain any evidence for sclerostin acting as a direct BMP antagonist using a BMP‐specific reporter construct. In contrast, sclerostin shared many characteristics with the Wnt antagonist dickkopf‐1 in antagonizing BMP‐stimulated bone formation and BMP‐ and Wnt‐induced Wnt reporter construct activation. Conclusions : Sclerostin inhibits BMP‐stimulated bone formation but does not affect BMP signaling. Instead, it antagonizes Wnt signaling in osteoblastic cells. High bone mass in sclerosteosis and van Buchem disease may, therefore, result from increased Wnt signaling

    First missense mutation in the **SOST** gene causing sclerosteosis by loss of sclerostin function

    No full text
    Sclerosteosis is a rare bone dysplasia characterized by greatly increased bone mass, especially of the long bones and the skull. Patients are tall, show facial asymmetry and often have syndactyly. Clinical complications are due to entrapment of cranial nerves. The disease is thought to be due to loss-of-function mutations in the SOST gene. The SOST gene product, sclerostin, is secreted by osteocytes and transported to the bone surface where it inhibits osteoblastic bone formation by antagonizing Wnt signaling. In a small Turkish family with sclerosteosis, we identified a missense mutation (c.499T>C; p.Cys167Arg) in exon 2 of the SOST gene. This type of mutation has not been previously reported and using different functional approaches, we show that it has a devastating effect on the biological function of sclerostin. The affected cysteine is the last cysteine residue of the cystine-knot motif and loss of this residue leads to retention of the mutant protein in the ER, possibly as a consequence of impaired folding. Together with a significant reduced ability to bind to LRP5 and inhibit Wnt signaling, the p.Cys167Arg mutation leads to a complete loss of function of sclerostin and thus to the characteristic sclerosteosis phenotype. (C) 2010 Wiley-Liss, Inc.Imaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas

    Lack of Noggin Expression by Cancer Cells Is a Determinant of the Osteoblast Response in Bone Metastases

    No full text
    Prostate and mammary cancer bone metastases can be osteoblastic or osteolytic, but the mechanisms determining these features are unclear. Bone morphogenetic and Wnt proteins are osteoinductive molecules. Their activity is modulated by antagonists such as noggin and dickkopf-1. Differential expression analysis of bone morphogenetic and Wnt protein antagonists in human prostate and mammary cancer cell lines showed that osteolytic cell lines constitutively express in vitro noggin and dickkopf-1 and at least one of the osteolytic cytokines parathyroid hormone-related protein, colony-stimulating factor-1, and interleukin-8. In contrast, osteoinductive cell lines express neither noggin nor dickkopf-1 nor osteolytic cytokines in vitro. The noggin differential expression profile observed in vitro was confirmed in vivo in prostate cancer cell lines xenografted into bone and in clinical samples of bone metastasis. Forced noggin expression in an osteoinductive prostate cancer cell line abolished the osteoblast response induced in vivo by its intraosseous xenografts. Basal bone resorption and tumor growth kinetics were marginally affected. Lack of noggin and possibly dickkopf-1 expression by cancer cells may be a relevant mechanism contributing to the osteoblast response in bone metastases. Concomitant lack of osteolytic cytokines may be permissive of this effect. Noggin is a candidate drug for the adjuvant therapy of bone metastasis
    corecore