13 research outputs found
The Sputum Microbiome in Pulmonary Tuberculosis and Its Association With Disease Manifestations: A Cross-Sectional Study.
Each day, approximately 27,000 people become ill with tuberculosis (TB), and 4,000 die from this disease. Pulmonary TB is the main clinical form of TB, and affects the lungs with a considerably heterogeneous manifestation among patients. Immunomodulation by an interplay of host-, environment-, and pathogen-associated factors partially explains such heterogeneity. Microbial communities residing in the host's airways have immunomodulatory effects, but it is unclear if the inter-individual variability of these microbial communities is associated with the heterogeneity of pulmonary TB. Here, we investigated this possibility by characterizing the microbial composition in the sputum of 334 TB patients from Tanzania, and by assessing its association with three aspects of disease manifestations: sputum mycobacterial load, severe clinical findings, and chest x-ray (CXR) findings. Compositional data analysis of taxonomic profiles based on 16S-rRNA gene amplicon sequencing and on whole metagenome shotgun sequencing, and graph-based inference of microbial associations revealed that the airway microbiome of TB patients was shaped by inverse relationships between Streptococcus and two anaerobes: Selenomonas and Fusobacterium. Specifically, the strength of these microbial associations was negatively correlated with Faith's phylogenetic diversity (PD) and with the accumulation of transient genera. Furthermore, low body mass index (BMI) determined the association between abnormal CXRs and community diversity and composition. These associations were mediated by increased abundance of Selenomonas and Fusobacterium, relative to the abundance of Streptococcus, in underweight patients with lung parenchymal infiltrates and in comparison to those with normal chest x-rays. And last, the detection of herpesviruses and anelloviruses in sputum microbial assemblage was linked to co-infection with HIV. Given the anaerobic metabolism of Selenomonas and Fusobacterium, and the hypoxic environment of lung infiltrates, our results suggest that in underweight TB patients, lung tissue remodeling toward anaerobic conditions favors the growth of Selenomonas and Fusobacterium at the expense of Streptococcus. These new insights into the interplay among particular members of the airway microbiome, BMI, and lung parenchymal lesions in TB patients, add a new dimension to the long-known association between low BMI and pulmonary TB. Our results also drive attention to the airways virome in the context of HIV-TB coinfection
Multiple Introductions of Mycobacterium tuberculosis Lineage 2–Beijing Into Africa Over Centuries
The Lineage 2–Beijing (L2–Beijing) sub-lineage of Mycobacterium tuberculosis has received much attention due to its high virulence, fast disease progression, and association with antibiotic resistance. Despite several reports of the recent emergence of L2–Beijing in Africa, no study has investigated the evolutionary history of this sub-lineage on the continent. In this study, we used whole genome sequences of 781 L2 clinical strains from 14 geographical regions globally distributed to investigate the origins and onward spread of this lineage in Africa. Our results reveal multiple introductions of L2–Beijing into Africa linked to independent bacterial populations from East- and Southeast Asia. Bayesian analyses further indicate that these introductions occurred during the past 300 years, with most of these events pre-dating the antibiotic era. Hence, the success of L2–Beijing in Africa is most likely due to its hypervirulence and high transmissibility rather than drug resistance
HIV coinfection is associated with low fitness rpoB variants in rifampicin-resistant Mycobacterium tuberculosis.
We analysed 312 drug-resistant genomes of Mycobacterium tuberculosis (Mtb) collected from HIV coinfected and HIV negative TB patients from nine countries with a high tuberculosis burden. We found that rifampicin-resistant Mtb strains isolated from HIV coinfected patients carried disproportionally more resistance-conferring mutations in rpoB that are associated with a low fitness in the absence of the drug, suggesting these low fitness rpoB variants can thrive in the context of reduced host immunity
Insights into the genetic diversity of Mycobacterium tuberculosis in Tanzania.
BACKGROUND
Human tuberculosis (TB) is caused by seven phylogenetic lineages of the Mycobacterium tuberculosis complex (MTBC), Lineage 1-7. Recent advances in rapid genotyping of MTBC based on single nucleotide polymorphisms (SNP), allow for phylogenetically robust strain classification, paving the way for defining genotype-phenotype relationships in clinical settings. Such studies have revealed that, in addition to host and environmental factors, strain variation in the MTBC influences the outcome of TB infection and disease. In Tanzania, such molecular epidemiological studies of TB however are scarce in spite of a high TB burden.
METHODS AND FINDINGS
Here we used SNP-typing to characterize a nationwide collection of 2,039 MTBC clinical isolates representative of 1.6% of all new and retreatment TB cases notified in Tanzania during 2012 and 2013. Four lineages, namely Lineage 1-4 were identified within the study population. The distribution and frequency of these lineages varied across regions but overall, Lineage 4 was the most frequent (n = 866, 42.5%), followed by Lineage 3 (n = 681, 33.4%) and 1 (n = 336, 16.5%), with Lineage 2 being the least frequent (n = 92, 4.5%). We found Lineage 2 to be independently associated with female sex (adjusted odds ratio [aOR] 2.14; 95% confidence interval [95% CI] 1.31 - 3.50, p = 0.002) and retreatment cases (aOR 1.67; 95% CI 0.95 - 2.84, p = 0. 065) in the study population. We found no associations between MTBC lineage and patient age or HIV status. Our sublineage typing based on spacer oligotyping on a subset of Lineage 1, 3 and 4 strains revealed the presence of mainly EAI, CAS and LAM families. Finally, we detected low levels of multidrug resistant isolates among a subset of 144 retreatment cases.
CONCLUSIONS
This study provides novel insights into the MTBC lineages and the possible influence of pathogen-related factors on the TB epidemic in Tanzania
Back-to-Africa introductions of Mycobacterium tuberculosis as the main cause of tuberculosis in Dar es Salaam, Tanzania
In settings with high tuberculosis (TB) endemicity, distinct genotypes of the Mycobacterium tuberculosis complex (MTBC) often differ in prevalence. However, the factors leading to these differences remain poorly understood. Here we studied the MTBC population in Dar es Salaam, Tanzania over a six-year period, using 1,082 unique patient-derived MTBC whole-genome sequences (WGS) and associated clinical data. We show that the TB epidemic in Dar es Salaam is dominated by multiple MTBC genotypes introduced to Tanzania from different parts of the world during the last 300 years. The most common MTBC genotypes deriving from these introductions exhibited differences in transmission rates and in the duration of the infectious period, but little differences in overall fitness, as measured by the effective reproductive number. Moreover, measures of disease severity and bacterial load indicated no differences in virulence between these genotypes during active TB. Instead, the combination of an early introduction and a high transmission rate accounted for the high prevalence of L3.1.1, the most dominant MTBC genotype in this setting. Yet, a longer co-existence with the host population did not always result in a higher transmission rate, suggesting that distinct life-history traits have evolved in the different MTBC genotypes. Taken together, our results point to bacterial factors as important determinants of the TB epidemic in Dar es Salaam
Distinct clinical characteristics and helminth co-infections in adult tuberculosis patients from urban compared to rural Tanzania
Differences in rural and urban settings could account for distinct characteristics in the epidemiology of tuberculosis (TB). We comparatively studied epidemiological features of TB and helminth co-infections in adult patients from rural and urban settings of Tanzania.; Adult patients (≥ 18 years) with microbiologically confirmed pulmonary TB were consecutively enrolled into two cohorts in Dar es Salaam, with ~ 4.4 million inhabitants (urban), and Ifakara in the sparsely populated Kilombero District with ~ 400 000 inhabitants (rural). Clinical data were obtained at recruitment. Stool and urine samples were subjected to diagnose helminthiases using Kato-Katz, Baermann, urine filtration, and circulating cathodic antigen tests. Differences between groups were assessed by χ; 2; , Fisher's exact, and Wilcoxon rank sum tests. Logistic regression models were used to determine associations.; Between August 2015 and February 2017, 668 patients were enrolled, 460 (68.9%) at the urban and 208 (31.1%) at the rural site. Median patient age was 35 years (interquartile range [IQR]: 27-41.5 years), and 454 (68%) were males. Patients from the rural setting were older (median age 37 years vs. 34 years, P = 0.003), had a lower median body mass index (17.5 kg/m; 2; vs. 18.5 kg/m; 2; , P <  0.001), a higher proportion of recurrent TB cases (9% vs. 1%, P <  0.001), and in HIV/TB co-infected patients a lower median CD4 cell counts (147 cells/μl vs. 249 cells/μl, P = 0.02) compared to those from urban Tanzania. There was no significant difference in frequencies of HIV infection, diabetes mellitus, and haemoglobin concentration levels between the two settings. The overall prevalence of helminth co-infections was 22.9% (95% confidence interval [CI]: 20.4-27.0%). The significantly higher prevalence of helminth infections at the urban site (25.7% vs. 17.3%, P = 0.018) was predominantly driven by Strongyloides stercoralis (17.0% vs. 4.8%, P <  0.001) and Schistosoma mansoni infection (4.1% vs. 16.4%, P <  0.001). Recurrent TB was associated with living in a rural setting (adjusted odds ratio [aOR]: 3.97, 95% CI: 1.16-13.67) and increasing age (aOR: 1.06, 95% CI: 1.02-1.10).; Clinical characteristics and helminth co-infections pattern differ in TB patients in urban and rural Tanzania. The differences underline the need for setting-specific, tailored public health interventions to improve clinical management of TB and comorbidities
Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages
Generalist and specialist species differ in the breadth of their ecological niches. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that, whereas the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration.We thank S. Lecher, S. Li and J. Zallet for technical support. Calculations were performed at the sciCORE scientific computing core facility at the University of Basel. This work was supported by the Swiss National Science Foundation (grants 310030_166687 (S.G.) and 320030_153442 (M.E.) and Swiss HIV Cohort Study grant 740 to L.F.), the European Research Council (309540-EVODRTB to S.G.), TB-PAN-NET (FP7-223681 to S.N.), PathoNgenTrace projects (FP7-278864-2 to S.N.), SystemsX.ch (S.G.), the German Center for Infection Research (DZIF; S.N.), the Novartis Foundation (S.G.), the Natural Science Foundation of China (91631301 to Q.G.), and the National Institute of Allergy and Infectious Diseases (5U01-AI069924-05) of the US National Institutes of Health (M.E.)
Limited value of whole blood Xpert(®) MTB/RIF for diagnosing tuberculosis in children
We evaluated the ability of the Xpert(®) MTB/RIF assay to detect Mycobacterium tuberculosis in whole blood of children with tuberculosis in tuberculosis endemic settings with high rates of HIV infection.; From June 2011 to September 2012 we prospectively enrolled children with symptoms or signs suggestive of tuberculosis at three research centres in Tanzania and Uganda. After clinical assessment, respiratory specimens were collected for microscopy and culture, as well as whole blood for Xpert(®) MTB/RIF. Children were classified according to standardised case definitions.; A total of 232 children were evaluated; 14 (6.0%) had culture-confirmed tuberculosis. The Xpert(®) MTB/RIF assay detected M. tuberculosis in 5/232 (2.2%) blood samples with 1 (0.4%) error reading and presumably 1 (0.4%) false-positive result. The sensitivity of the assay in children with culture-confirmed (1/14) versus no tuberculosis (1/117) was 7.1% (95% CI, 1.3-31.5). Three of the five Xpert(®) MTB/RIF positive patients had negative cultures, but were classified as probable tuberculosis cases. Assay sensitivity against a composite reference standard (culture-confirmed, highly probable or probable tuberculosis) was 5.4% (95% CI, 2.1-13.1).; Whole blood Xpert(®) MTB/RIF demonstrated very poor sensitivity, although it may enhance the diagnostic yield in select cases, with culture-negative tuberculosis
Multiple Introductions of Mycobacterium tuberculosis Lineage 2–Beijing Into Africa Over Centuries
The Lineage 2–Beijing (L2–Beijing) sub-lineage of Mycobacterium tuberculosis has
received much attention due to its high virulence, fast disease progression, and
association with antibiotic resistance. Despite several reports of the recent emergence of
L2–Beijing in Africa, no study has investigated the evolutionary history of this sub-lineage
on the continent. In this study, we used whole genome sequences of 781 L2 clinical
strains from 14 geographical regions globally distributed to investigate the origins
and onward spread of this lineage in Africa. Our results reveal multiple introductions
of L2–Beijing into Africa linked to independent bacterial populations from East- and
Southeast Asia. Bayesian analyses further indicate that these introductions occurred
during the past 300 years, with most of these events pre-dating the antibiotic era. Hence,
the success of L2–Beijing in Africa is most likely due to its hypervirulence and high
transmissibility rather than drug resistance