4,576 research outputs found
Role of the electric field in surface electron dynamics above the vacuum level
Scanning tunneling spectroscopy (STS) is used to study the dynamics of hot
electrons trapped on a Cu(100) surface in field emission resonances (FER) above
the vacuum level. Differential conductance maps show isotropic electron
interference wave patterns around defects whenever their energy lies within a
surface projected band gap. Their Fourier analysis reveals a broad wave vector
distribution, interpreted as due to the lateral acceleration of hot electrons
in the inhomogeneous tip-induced potential. A line-shape analysis of the
characteristic constant-current conductance spectra permits to establish the
relation between apparent width of peaks and intrinsic line-width of FERs, as
well as the identification of the different broadening mechanisms.Comment: 7 pages, 4 figures, to appear in Phys. Rev.
Do students value feedback? Student perceptions of tutors' written responses
The topic of feedback to students is an under-researched area, and there has been little empirical research published which focuses on student perceptions. This study explores student perceptions of written feedback and examines whether feedback received demonstrated a student-centred approach to learning. A multi-method approach of qualitative and quantitative data collection and analysis was used to survey 44 students in the faculties of Business and Art & Design. Student responses show feedback is valued, but believed tutor comments could be more helpful. Survey results indicate that students may need advice on understanding and using feedback before they can engage with it. Content analysis of feedback samples and student responses uncovered four main themes of feedback considered unhelpful to improve learning: comments which were too general or vague, lacked guidance, focused on the negative, or were unrelated to assessment criteria. It is suggested that by focusing on messages conveyed by their writing, providing feedback set in the context of assessment criteria and learning outcomes, and by ensuring that it is timely, tutors could greatly improve the value of feedback
Signal specific electric potential sensors for operation in noisy environments
Limitations on the performance of electric potential sensors are due to saturation caused by environmental electromagnetic noise. The work described involves tailoring the response of the sensors to reject the main components of the noise, thereby enhancing both the effective dynamic range and signal to noise. We show that by using real-time analogue signal processing it is possible to detect a human heartbeat at a distance of 40 cm from the front of a subject in an unshielded laboratory. This result has significant implications both for security sensing and biometric measurements in addition to the more obvious safety related applications
Can Streamer Blobs prevent the Buildup of the Interplanetetary Magnetic Field?
Coronal Mass Ejections continuously drag closed magnetic field lines away
from the Sun, adding new flux to the interplanetary magnetic field (IMF). We
propose that the outward-moving blobs that have been observed in helmet
streamers are evidence of ongoing, small-scale reconnection in streamer current
sheets, which may play an important role in the prevention of an indefinite
buildup of the IMF. Reconnection between two open field lines from both sides
of a streamer current sheet creates a new closed field line, which becomes part
of the helmet, and a disconnected field line, which moves outward. The blobs
are formed by plasma from the streamer that is swept up in the trough of the
outward moving field line. We show that this mechanism is supported by
observations from SOHO/LASCO. Additionally, we propose a thorough statistical
study to quantify the contribution of blob formation to the reduction of the
IMF, and indicate how this mechanism may be verified by observations with
SOHO/UVCS and the proposed NASA STEREO and ESA Polar Orbiter missions.Comment: 7 pages, 2 figures; accepted by The Astrophysical Journal Letters;
uses AASTe
Application of ERTS-1 imagery to state wide land information system in Minnesota
There are no author-identified significant results in this report
Demonstration of Universal Parametric Entangling Gates on a Multi-Qubit Lattice
We show that parametric coupling techniques can be used to generate selective
entangling interactions for multi-qubit processors. By inducing coherent
population exchange between adjacent qubits under frequency modulation, we
implement a universal gateset for a linear array of four superconducting
qubits. An average process fidelity of is estimated for
three two-qubit gates via quantum process tomography. We establish the
suitability of these techniques for computation by preparing a four-qubit
maximally entangled state and comparing the estimated state fidelity against
the expected performance of the individual entangling gates. In addition, we
prepare an eight-qubit register in all possible bitstring permutations and
monitor the fidelity of a two-qubit gate across one pair of these qubits.
Across all such permutations, an average fidelity of
is observed. These results thus offer a path to a scalable architecture with
high selectivity and low crosstalk
Turbulence in the Solar Atmosphere: Manifestations and Diagnostics via Solar Image Processing
Intermittent magnetohydrodynamical turbulence is most likely at work in the
magnetized solar atmosphere. As a result, an array of scaling and multi-scaling
image-processing techniques can be used to measure the expected
self-organization of solar magnetic fields. While these techniques advance our
understanding of the physical system at work, it is unclear whether they can be
used to predict solar eruptions, thus obtaining a practical significance for
space weather. We address part of this problem by focusing on solar active
regions and by investigating the usefulness of scaling and multi-scaling
image-processing techniques in solar flare prediction. Since solar flares
exhibit spatial and temporal intermittency, we suggest that they are the
products of instabilities subject to a critical threshold in a turbulent
magnetic configuration. The identification of this threshold in scaling and
multi-scaling spectra would then contribute meaningfully to the prediction of
solar flares. We find that the fractal dimension of solar magnetic fields and
their multi-fractal spectrum of generalized correlation dimensions do not have
significant predictive ability. The respective multi-fractal structure
functions and their inertial-range scaling exponents, however, probably provide
some statistical distinguishing features between flaring and non-flaring active
regions. More importantly, the temporal evolution of the above scaling
exponents in flaring active regions probably shows a distinct behavior starting
a few hours prior to a flare and therefore this temporal behavior may be
practically useful in flare prediction. The results of this study need to be
validated by more comprehensive works over a large number of solar active
regions.Comment: 26 pages, 7 figure
The Evolution of Sunspot Magnetic Fields Associated with a Solar Flare
Solar flares occur due to the sudden release of energy stored in
active-region magnetic fields. To date, the pre-cursors to flaring are still
not fully understood, although there is evidence that flaring is related to
changes in the topology or complexity of an active region's magnetic field.
Here, the evolution of the magnetic field in active region NOAA 10953 was
examined using Hinode/SOT-SP data, over a period of 12 hours leading up to and
after a GOES B1.0 flare. A number of magnetic-field properties and low-order
aspects of magnetic-field topology were extracted from two flux regions that
exhibited increased Ca II H emission during the flare. Pre-flare increases in
vertical field strength, vertical current density, and inclination angle of ~
8degrees towards the vertical were observed in flux elements surrounding the
primary sunspot. The vertical field strength and current density subsequently
decreased in the post-flare state, with the inclination becoming more
horizontal by ~7degrees. This behaviour of the field vector may provide a
physical basis for future flare forecasting efforts.Comment: Accepted for Publication in Solar Physics. 16 pages, 4 figure
Towards T1-limited magnetic resonance imaging using Rabi beats
Two proof-of-principle experiments towards T1-limited magnetic resonance
imaging with NV centers in diamond are demonstrated. First, a large number of
Rabi oscillations is measured and it is demonstrated that the hyperfine
interaction due to the NV's 14N can be extracted from the beating oscillations.
Second, the Rabi beats under V-type microwave excitation of the three hyperfine
manifolds is studied experimentally and described theoretically.Comment: 6 pages, 8 figure
- …
