1,049 research outputs found

    Bridging Epidemiological Data with Features of the Urban Context: An experience of Urban Public Health within the City of Milan, Italy.

    Get PDF
    Referring to the Research Project ‘‘Enhancing Healthcare and Well-Being Through the Potential of Big Data: An Integration of Survey, Administrative, and Open Data to Assess Health Risk in the City of Milan with Data Science’’ the Authors present preliminary results regarding a survey distributed to a sample of citizens across all neighborhoods of Milano city. This survey sought to collect data regarding health risk factors of this population, including both individual (e.g. socio- demographic characteristics, behaviors, etc.) and community (e.g. environmental/morphological features, available social services, etc.) data. A digital survey was designed to collect information on the health conditions, risk factors, and lifestyle characteristics of a representative sample of the Milanese population at the neighborhood level, with reference to the census tracts and Local Identity Units (NIL). Collected survey data are entered into a system containing corresponding individual health information acquired from the Local Health Authority databases, creating a synthesized information profile with each respondent’s state of health, including existing conditions, health services used, and drug therapies. The disseminated survey was developed from comparisons with similar experiences at the national/international level and divided into 60 multiple choice questions (6 for Sociodemographic profile; 8 for Context of residence; 12 for Functional limitations; 25 for Behaviors and lifestyles; 9 for Access to health services). The data from urban analysis conducted on the NIL of the City of Milan are assessed with particular reference to the theme of bicycle-pedestrian accessibility (Walkability) in the urban context and repercus- sions on the adoption of Healthy Lifestyles. The models developed through this research are expected to provide critical insight for designing health promotion, health protec- tion, and disease prevention interventions aimed both at individual and community level

    N=1 SQCD-like theories with N_f massive flavors from AdS/CFT and beta functions

    Get PDF
    We study new supergravity solutions related to large-NcN_c N=1{\cal N}=1 supersymmetric gauge field theories with a large number NfN_f of massive flavors. We use a recently proposed framework based on configurations with NcN_c color D5 branes and a distribution of NfN_f flavor D5 branes, governed by a function NfS(r)N_f S(r). Although the system admits many solutions, under plausible physical assumptions the relevant solution is uniquely determined for each value of xNf/Ncx\equiv N_f/N_c. In the IR region, the solution smoothly approaches the deformed Maldacena-N\'u\~nez solution. In the UV region it approaches a linear dilaton solution. For x<2x<2 the gauge coupling βg\beta_g function computed holographically is negative definite, in the UV approaching the NSVZ β\beta function with anomalous dimension γ0=1/2\gamma_0= -1/2 (approaching 3/(32π2)(2NcNf)g3-3/(32\pi^2)(2N_c-N_f)g^3)), and with βg\beta_g \to-\infty in the IR. For x=2x=2, βg\beta_g has a UV fixed point at strong coupling, suggesting the existence of an IR fixed point at a lower value of the coupling. We argue that the solutions with x>2x>2 describe a "Seiberg dual" picture where Nf2NcN_f-2N_c flips sign.Comment: 18 pages, 10 figure

    Natural Course of COVID-19 and Independent Predictors of Mortality.

    Get PDF
    Background: During the SARS-CoV-2 pandemic, several biomarkers were shown to be helpful in determining the prognosis of COVID-19 patients. The aim of our study was to evaluate the prognostic value of N-terminal pro-Brain Natriuretic Peptide (NT-pro-BNP) in a cohort of patients with COVID-19. Methods: One-hundred and seven patients admitted to the Covid Hospital of Messina University between June 2022 and January 2023 were enrolled in our study. The demographic, clinical, biochemical, instrumental, and therapeutic parameters were recorded. The primary outcome was in-hospital mortality. A comparison between patients who recovered and were discharged and those who died during the hospitalization was performed. The independent parameters associated with in-hospital death were assessed by multivariable analysis and a stepwise regression logistic model. Results: A total of 27 events with an in-hospital mortality rate of 25.2% occurred during our study. Those who died during hospitalization were older, with lower GCS and PaO2/FiO2 ratio, elevated D-dimer values, INR, creatinine values and shorter PT (prothrombin time). They had an increased frequency of diagnosis of heart failure (p &lt; 0.0001) and higher NT-pro-BNP values. A multivariate logistic regression analysis showed that higher NT-pro-BNP values and lower PT and PaO2/FiO2 at admission were independent predictors of mortality during hospitalization. Conclusions: This study shows that NT-pro-BNP levels, PT, and PaO2/FiO2 ratio are independently associated with in-hospital mortality in subjects with COVID-19 pneumonia. Further longitudinal studies are warranted to confirm the results of this study

    Direct evidence for a competition between the pseudogap and high temperature superconductivity in the cuprates

    Full text link
    A pairing gap and coherence are the two hallmarks of superconductivity. In a classical BCS superconductor they are established simultaneously at Tc. In the cuprates, however, an energy gap (pseudogap) extends above Tc. The origin of this gap is one of the central issues in high temperature superconductivity. Recent experimental evidence demonstrates that the pseudogap and the superconducting gap are associated with different energy scales. It is however not clear whether they coexist independently or compete. In order to understand the physics of cuprates and improve their superconducting properties it is vital to determine whether the pseudogap is friend or foe of high temperature supercondctivity. Here we report evidence from angle resolved photoemission spectroscopy (ARPES) that the pseudogap and high temperature superconductivity represent two competing orders. We find that there is a direct correlation between a loss in the low energy spectral weight due to the pseudogap and a decrease of the coherent fraction of paired electrons. Therefore, the pseudogap competes with the superconductivity by depleting the spectral weight available for pairing in the region of momentum space where the superconducting gap is largest. This leads to a very unusual state in the underdoped cuprates, where only part of the Fermi surface develops coherence.Comment: Improved version was published in Natur

    Recurrent Modification of a Conserved Cis-Regulatory Element Underlies Fruit Fly Pigmentation Diversity

    Get PDF
    The development of morphological traits occurs through the collective action of networks of genes connected at the level of gene expression. As any node in a network may be a target of evolutionary change, the recurrent targeting of the same node would indicate that the path of evolution is biased for the relevant trait and network. Although examples of parallel evolution have implicated recurrent modification of the same gene and cis-regulatory element (CRE), little is known about the mutational and molecular paths of parallel CRE evolution. In Drosophila melanogaster fruit flies, the Bric-à-brac (Bab) transcription factors control the development of a suite of sexually dimorphic traits on the posterior abdomen. Female-specific Bab expression is regulated by the dimorphic element, a CRE that possesses direct inputs from body plan (ABD-B) and sex-determination (DSX) transcription factors. Here, we find that the recurrent evolutionary modification of this CRE underlies both intraspecific and interspecific variation in female pigmentation in the melanogaster species group. By reconstructing the sequence and regulatory activity of the ancestral Drosophila melanogaster dimorphic element, we demonstrate that a handful of mutations were sufficient to create independent CRE alleles with differing activities. Moreover, intraspecific and interspecific dimorphic element evolution proceeded with little to no alterations to the known body plan and sex-determination regulatory linkages. Collectively, our findings represent an example where the paths of evolution appear biased to a specific CRE, and drastic changes in function were accompanied by deep conservation of key regulatory linkages. © 2013 Rogers et al

    Age-related delay in information accrual for faces: Evidence from a parametric, single-trial EEG approach

    Get PDF
    Background: In this study, we quantified age-related changes in the time-course of face processing by means of an innovative single-trial ERP approach. Unlike analyses used in previous studies, our approach does not rely on peak measurements and can provide a more sensitive measure of processing delays. Young and old adults (mean ages 22 and 70 years) performed a non-speeded discrimination task between two faces. The phase spectrum of these faces was manipulated parametrically to create pictures that ranged between pure noise (0% phase information) and the undistorted signal (100% phase information), with five intermediate steps. Results: Behavioural 75% correct thresholds were on average lower, and maximum accuracy was higher, in younger than older observers. ERPs from each subject were entered into a single-trial general linear regression model to identify variations in neural activity statistically associated with changes in image structure. The earliest age-related ERP differences occurred in the time window of the N170. Older observers had a significantly stronger N170 in response to noise, but this age difference decreased with increasing phase information. Overall, manipulating image phase information had a greater effect on ERPs from younger observers, which was quantified using a hierarchical modelling approach. Importantly, visual activity was modulated by the same stimulus parameters in younger and older subjects. The fit of the model, indexed by R2, was computed at multiple post-stimulus time points. The time-course of the R2 function showed a significantly slower processing in older observers starting around 120 ms after stimulus onset. This age-related delay increased over time to reach a maximum around 190 ms, at which latency younger observers had around 50 ms time lead over older observers. Conclusion: Using a component-free ERP analysis that provides a precise timing of the visual system sensitivity to image structure, the current study demonstrates that older observers accumulate face information more slowly than younger subjects. Additionally, the N170 appears to be less face-sensitive in older observers

    Spacelike Singularities and Hidden Symmetries of Gravity

    Get PDF
    We review the intimate connection between (super-)gravity close to a spacelike singularity (the "BKL-limit") and the theory of Lorentzian Kac-Moody algebras. We show that in this limit the gravitational theory can be reformulated in terms of billiard motion in a region of hyperbolic space, revealing that the dynamics is completely determined by a (possibly infinite) sequence of reflections, which are elements of a Lorentzian Coxeter group. Such Coxeter groups are the Weyl groups of infinite-dimensional Kac-Moody algebras, suggesting that these algebras yield symmetries of gravitational theories. Our presentation is aimed to be a self-contained and comprehensive treatment of the subject, with all the relevant mathematical background material introduced and explained in detail. We also review attempts at making the infinite-dimensional symmetries manifest, through the construction of a geodesic sigma model based on a Lorentzian Kac-Moody algebra. An explicit example is provided for the case of the hyperbolic algebra E10, which is conjectured to be an underlying symmetry of M-theory. Illustrations of this conjecture are also discussed in the context of cosmological solutions to eleven-dimensional supergravity.Comment: 228 pages. Typos corrected. References added. Subject index added. Published versio
    corecore