58 research outputs found

    GoIFISH: a system for the quantification of single cell heterogeneity from IFISH images.

    Get PDF
    Molecular analysis has revealed extensive intra-tumor heterogeneity in human cancer samples, but cannot identify cell-to-cell variations within the tissue microenvironment. In contrast, in situ analysis can identify genetic aberrations in phenotypically defined cell subpopulations while preserving tissue-context specificity. GoIFISHGoIFISH is a widely applicable, user-friendly system tailored for the objective and semi-automated visualization, detection and quantification of genomic alterations and protein expression obtained from fluorescence in situ analysis. In a sample set of HER2-positive breast cancers GoIFISHGoIFISH is highly robust in visual analysis and its accuracy compares favorably to other leading image analysis methods. GoIFISHGoIFISH is freely available at www.sourceforge.net/projects/goifish/.This is the final published version. It is also available from Genome Biology at http://genomebiology.com/2014/15/8/442

    Intratumor heterogeneity defines treatment-resistant HER2+ breast tumors.

    Get PDF
    Targeted therapy for patients with HER2-positive (HER2+) breast cancer has improved overall survival, but many patients still suffer relapse and death from the disease. Intratumor heterogeneity of both estrogen receptor (ER) and HER2 expression has been proposed to play a key role in treatment failure, but little work has been done to comprehensively study this heterogeneity at the single-cell level. In this study, we explored the clinical impact of intratumor heterogeneity of ER protein expression, HER2 protein expression, and HER2 gene copy number alterations. Using combined immunofluorescence and in situ hybridization on tissue sections followed by a validated computational approach, we analyzed more than 13 000 single tumor cells across 37 HER2+ breast tumors. The samples were taken both before and after neoadjuvant chemotherapy plus HER2-targeted treatment, enabling us to study tumor evolution as well. We found that intratumor heterogeneity for HER2 copy number varied substantially between patient samples. Highly heterogeneous tumors were associated with significantly shorter disease-free survival and fewer long-term survivors. Patients for which HER2 characteristics did not change during treatment had a significantly worse outcome. This work shows the impact of intratumor heterogeneity in molecular diagnostics for treatment selection in HER2+ breast cancer patients and the power of computational scoring methods to evaluate in situ molecular markers in tissue biopsies

    PCM4EU and PRIME-ROSE:Collaboration for implementation of precision cancer medicine in Europe

    Get PDF
    Background: In the two European Union (EU)-funded projects, PCM4EU (Personalized Cancer Medicine for all EU citizens) and PRIME-ROSE (Precision Cancer Medicine Repurposing System Using Pragmatic Clinical Trials), we aim to facilitate implementation of precision cancer medicine (PCM) in Europe by leveraging the experience from ongoing national initiatives that have already been particularly successful. Patients and methods: PCM4EU and PRIME-ROSE gather 17 and 24 partners, respectively, from 19 European countries. The projects are based on a network of Drug Rediscovery Protocol (DRUP)-like clinical trials that are currently ongoing or soon to start in 11 different countries, and with more trials expected to be established soon. The main aims of both the projects are to improve implementation pathways from molecular diagnostics to treatment, and reimbursement of diagnostics and tumour-tailored therapies to provide examples of best practices for PCM in Europe. Results: PCM4EU and PRIME-ROSE were launched in January and July 2023, respectively. Educational materials, including a podcast series, are already available from the PCM4EU website (http://www.pcm4eu. eu). The first reports, including an overview of requirements for the reimbursement systems in participating countries and a guide on patient involvement, are expected to be published in 2024. Conclusion: European collaboration can facilitate the implementation of PCM and thereby provide affordable and equitable access to precision diagnostics and matched therapies for more patients.</p

    PCM4EU and PRIME-ROSE:Collaboration for implementation of precision cancer medicine in Europe

    Get PDF
    Background: In the two European Union (EU)-funded projects, PCM4EU (Personalized Cancer Medicine for all EU citizens) and PRIME-ROSE (Precision Cancer Medicine Repurposing System Using Pragmatic Clinical Trials), we aim to facilitate implementation of precision cancer medicine (PCM) in Europe by leveraging the experience from ongoing national initiatives that have already been particularly successful. Patients and methods: PCM4EU and PRIME-ROSE gather 17 and 24 partners, respectively, from 19 European countries. The projects are based on a network of Drug Rediscovery Protocol (DRUP)-like clinical trials that are currently ongoing or soon to start in 11 different countries, and with more trials expected to be established soon. The main aims of both the projects are to improve implementation pathways from molecular diagnostics to treatment, and reimbursement of diagnostics and tumour-tailored therapies to provide examples of best practices for PCM in Europe. Results: PCM4EU and PRIME-ROSE were launched in January and July 2023, respectively. Educational materials, including a podcast series, are already available from the PCM4EU website (http://www.pcm4eu. eu). The first reports, including an overview of requirements for the reimbursement systems in participating countries and a guide on patient involvement, are expected to be published in 2024. Conclusion: European collaboration can facilitate the implementation of PCM and thereby provide affordable and equitable access to precision diagnostics and matched therapies for more patients.</p

    High-throughput molecular assays for inclusion in personalised oncology trials – State-of-the-art and beyond

    Get PDF
    In the last decades, the development of high-throughput molecular assays has revolutionised cancer diagnostics, paving the way for the concept of personalised cancer medicine. This progress has been driven by the introduction of such technologies through biomarker-driven oncology trials. In this review, strengths and limitations of various state-of-the-art sequencing technologies, including gene panel sequencing (DNA and RNA), whole-exome/whole-genome sequencing and whole-transcriptome sequencing, are explored, focusing on their ability to identify clinically relevant biomarkers with diagnostic, prognostic and/or predictive impact. This includes the need to assess complex biomarkers, for example microsatellite instability, tumour mutation burden and homologous recombination deficiency, to identify patients suitable for specific therapies, including immunotherapy. Furthermore, the crucial role of biomarker analysis and multidisciplinary molecular tumour boards in selecting patients for trial inclusion is discussed in relation to various trial concepts, including drug repurposing. Recognising that today's exploratory techniques will evolve into tomorrow's routine diagnostics and clinical study inclusion assays, the importance of emerging technologies for multimodal diagnostics, such as proteomics and in vivo drug sensitivity testing, is also discussed. In addition, key regulatory aspects and the importance of patient engagement in all phases of a clinical trial are described. Finally, we propose a set of recommendations for consideration when planning a new precision cancer medicine trial.imag

    High-throughput molecular assays for inclusion in personalised oncology trials – State-of-the-art and beyond

    Get PDF
    In the last decades, the development of high-throughput molecular assays has revolutionised cancer diagnostics, paving the way for the concept of personalised cancer medicine. This progress has been driven by the introduction of such technologies through biomarker-driven oncology trials. In this review, strengths and limitations of various state-of-the-art sequencing technologies, including gene panel sequencing (DNA and RNA), whole-exome/whole-genome sequencing and whole-transcriptome sequencing, are explored, focusing on their ability to identify clinically relevant biomarkers with diagnostic, prognostic and/or predictive impact. This includes the need to assess complex biomarkers, for example microsatellite instability, tumour mutation burden and homologous recombination deficiency, to identify patients suitable for specific therapies, including immunotherapy. Furthermore, the crucial role of biomarker analysis and multidisciplinary molecular tumour boards in selecting patients for trial inclusion is discussed in relation to various trial concepts, including drug repurposing. Recognising that today's exploratory techniques will evolve into tomorrow's routine diagnostics and clinical study inclusion assays, the importance of emerging technologies for multimodal diagnostics, such as proteomics and in vivo drug sensitivity testing, is also discussed. In addition, key regulatory aspects and the importance of patient engagement in all phases of a clinical trial are described. Finally, we propose a set of recommendations for consideration when planning a new precision cancer medicine trial.imag

    The prognostic significance of tumour cell detection in the peripheral blood versus the bone marrow in 733 early-stage breast cancer patients

    Get PDF
    Abstract Introduction The detection of circulating tumour cells (CTCs) in the peripheral blood and disseminated tumour cells (DTCs) in the bone marrow are promising prognostic tools for risk stratification in early breast cancer. There is, however, a need for further validation of these techniques in larger patient cohorts with adequate follow-up periods. Methods We assayed CTCs and DTCs at primary surgery in 733 stage I or II breast cancer patients with a median follow-up time of 7.6 years. CTCs were detected in samples of peripheral blood mononuclear cells previously stored in liquid-nitrogen using a previously-developed multi-marker quantitative PCR (QPCR)-based assay. DTCs were detected in bone marrow samples by immunocytochemical analysis using anti-cytokeratin antibodies. Results CTCs were detected in 7.9% of patients, while DTCs were found in 11.7%. Both CTC and DTC positivity predicted poor metastasis-free survival (MFS) and breast cancer-specific survival (BCSS); MFS hazard ratio (HR) = 2.4 (P &lt; 0.001)/1.9 (P = 0.006), and BCSS HR = 2.5 (P &lt; 0.001)/2.3 (P = 0.01), for CTC/DTC status, respectively). Multivariate analyses demonstrated that CTC status was an independent prognostic variable for both MFS and BCSS. CTC status also identified a subset of patients with significantly poorer outcome among low-risk node negative patients that did not receive adjuvant systemic therapy (MFS HR 2.3 (P = 0.039), BCSS HR 2.9 (P = 0.017)). Using both tests provided increased prognostic information and indicated different relevance within biologically dissimilar breast cancer subtypes. Conclusions These results support the use of CTC analysis in early breast cancer to generate clinically useful prognostic information
    • 

    corecore