589 research outputs found

    Loss of the homeostatic protein BPIFA1, leads to exacerbation of otitis media severity in the Junbo mouse model

    Get PDF
    Otitis Media (OM) is characterized by epithelial abnormalities and defects in innate immunity in the middle ear (ME). Although, BPIFA1, a member of the BPI fold containing family of putative innate defence proteins is abundantly expressed by the ME epithelium and SNPs in Bpifa1 have been associated with OM susceptibility, its role in the ME is not well characterized. We investigated the role of BPIFA1 in protection of the ME and the development of OM using murine models. Loss of Bpifa1 did not lead to OM development. However, deletion of Bpifa1 in Evi1Jbo/+mice, a model of chronic OM, caused significant exacerbation of OM severity, thickening of the ME mucosa and increased collagen deposition, without a significant increase in pro-inflammatory gene expression. Our data suggests that BPIFA1 is involved in maintaining homeostasis within the ME under steady state conditions and its loss in the presence of inflammation, exacerbates epithelial remodelling leading to more severe OM

    On the deflection of asteroids with mirrors

    Get PDF
    This paper presents an analysis of an asteroid deflection method based on multiple solar concentrators. A model of the deflection through the sublimation of the surface material of an asteroid is presented, with simulation results showing the achievable orbital deflection with, and without, accounting for the effects of mirror contamination due to the ejected debris plume. A second model with simulation results is presented analyzing an enhancement of the Yarkovsky effect, which provides a significant deflection even when the surface temperature is not high enough to sublimate. Finally the dynamical model of solar concentrators in the proximity of an irregular celestial body are discussed, together with a Lyapunov-based controller to maintain the spacecraft concentrators at a required distance from the asteroid

    Long-term perturbations due to a disturbing body in elliptic inclined orbit

    Full text link
    In the current study, a double-averaged analytical model including the action of the perturbing body's inclination is developed to study third-body perturbations. The disturbing function is expanded in the form of Legendre polynomials truncated up to the second-order term, and then is averaged over the periods of the spacecraft and the perturbing body. The efficiency of the double-averaged algorithm is verified with the full elliptic restricted three-body model. Comparisons with the previous study for a lunar satellite perturbed by Earth are presented to measure the effect of the perturbing body's inclination, and illustrate that the lunar obliquity with the value 6.68\degree is important for the mean motion of a lunar satellite. The application to the Mars-Sun system is shown to prove the validity of the double-averaged model. It can be seen that the algorithm is effective to predict the long-term behavior of a high-altitude Martian spacecraft perturbed by Sun. The double-averaged model presented in this paper is also applicable to other celestial systems.Comment: 28 pages, 6 figure

    Modelling spectral and timing properties of accreting black holes: the hybrid hot flow paradigm

    Full text link
    The general picture that emerged by the end of 1990s from a large set of optical and X-ray, spectral and timing data was that the X-rays are produced in the innermost hot part of the accretion flow, while the optical/infrared (OIR) emission is mainly produced by the irradiated outer thin accretion disc. Recent multiwavelength observations of Galactic black hole transients show that the situation is not so simple. Fast variability in the OIR band, OIR excesses above the thermal emission and a complicated interplay between the X-ray and the OIR light curves imply that the OIR emitting region is much more compact. One of the popular hypotheses is that the jet contributes to the OIR emission and even is responsible for the bulk of the X-rays. However, this scenario is largely ad hoc and is in contradiction with many previously established facts. Alternatively, the hot accretion flow, known to be consistent with the X-ray spectral and timing data, is also a viable candidate to produce the OIR radiation. The hot-flow scenario naturally explains the power-law like OIR spectra, fast OIR variability and its complex relation to the X-rays if the hot flow contains non-thermal electrons (even in energetically negligible quantities), which are required by the presence of the MeV tail in Cyg X-1. The presence of non-thermal electrons also lowers the equilibrium electron temperature in the hot flow model to <100 keV, making it more consistent with observations. Here we argue that any viable model should simultaneously explain a large set of spectral and timing data and show that the hybrid (thermal/non-thermal) hot flow model satisfies most of the constraints.Comment: 26 pages, 13 figures. To be published in the Space Science Reviews and as hard cover in the Space Sciences Series of ISSI - The Physics of Accretion on to Black Holes (Springer Publisher

    Implementation of a transitional care model for stroke: Perspectives from frontline clinicians, administrators, and COMPASS-TC implementation staff

    Get PDF
    Background and Objectives: Stroke is a chronic, complex condition that disproportionally affects older adults. Health systems are evaluating innovative transitional care (TC) models to improve outcomes in these patients. The Comprehensive Post-Acute Stroke Services (COMPASS) Study, a large cluster-randomized pragmatic trial, tested a TC model for patients with stroke or transient ischemic attack discharged home from the hospital. The implementation of COMPASS-TC in complex real-world settings was evaluated to identify successes and challenges with integration into the clinical workflow. Research Design and Methods: We conducted a concurrent process evaluation of COMPASS-TC implementation during the first year of the trial. Qualitative data were collected from 4 sources across 19 intervention hospitals. We analyzed transcripts from 43 conference calls with hospital clinicians, individual and group interviews with leaders and clinicians from 9 hospitals, and 2 interviews with the COMPASS-TC Director of Implementation using iterative thematic analysis. Themes were compared to the domains of the RE-AIM framework. Results: Organizational, individual, and community factors related to Reach, Adoption, and Implementation were identified. Organizational readiness was an additional key factor to successful implementation, in that hospitals that were not "organizationally ready" had more difficulty addressing implementation challenges. Discussion and Implications: Multifaceted TC models are challenging to implement. Facilitators of implementation were organizational commitment and capacity, prioritizing implementation of innovative delivery models to provide comprehensive care, being able to address challenges quickly, implementing systems for tracking patients throughout the intervention, providing clinicians with autonomy and support to address challenges, and adequately resourcing the intervention. Clinical Trial Registration: NCT02588664

    Affective Man-Machine Interface: Unveiling human emotions through biosignals

    Get PDF
    As is known for centuries, humans exhibit an electrical profile. This profile is altered through various psychological and physiological processes, which can be measured through biosignals; e.g., electromyography (EMG) and electrodermal activity (EDA). These biosignals can reveal our emotions and, as such, can serve as an advanced man-machine interface (MMI) for empathic consumer products. However, such a MMI requires the correct classification of biosignals to emotion classes. This chapter starts with an introduction on biosignals for emotion detection. Next, a state-of-the-art review is presented on automatic emotion classification. Moreover, guidelines are presented for affective MMI. Subsequently, a research is presented that explores the use of EDA and three facial EMG signals to determine neutral, positive, negative, and mixed emotions, using recordings of 21 people. A range of techniques is tested, which resulted in a generic framework for automated emotion classification with up to 61.31% correct classification of the four emotion classes, without the need of personal profiles. Among various other directives for future research, the results emphasize the need for parallel processing of multiple biosignals

    Evaluating the Potential of Legumes to Mitigate N2O Emissions From Permanent Grassland Using Process-Based Models

    Get PDF
    Funding Information: This modeling study was a joint effort of the Models4Pastures project within the framework of FACCE-JPI. Lutz Merbold and Kathrin Fuchs acknowledge funding received for the Swiss contribution to Models4Pastures (FACCE-JPI project, SNSF funded contract: 40FA40_154245/1) and for the Doc. Mobility fellowship (SNSF funded project: P1EZP2_172121). Lutz Merbold further acknowledges the support received for CGIAR Fund Council, Australia (ACIAR), Irish Aid, the European Union, the Netherlands, New Zealand, Switzerland, UK, USAID, and Thailand for funding to the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) as well as for the CGIAR Research Program on Livestock. The NZ contributors acknowledge funding from the New Zealand Government Ministry of Primary Industries to support the aims of the Livestock Research Group of the Global Research Alliance on Agricultural Greenhouse Gases and from AgResearch's Strategic Science Investment Fund (the Forages for Reduced Nitrate Leaching (FRNL) research program). The UK partners acknowledge funding by DEFRA and the RCUK projects: N-Circle (BB/N013484/1), UGRASS (NE/M016900/1), and GREENHOUSE (NE/K002589/1). R.M. Rees and C.F.E. Topp also received funding from the Scottish Government Strategic Research Programme. Lorenzo Brilli, Camilla Dibari, and Marco Bindi received funding from the Italian Ministry of Agricultural Food and Forestry Policies (MiPAAF). The FR partners acknowledge funding from CN-MIP project funded by the French National Research Agency (ANR-13-JFAC-0001) and from ADEME (no. 12-60-C0023). Open access funding enabled and organized by Projekt DEAL Funding Information: This modeling study was a joint effort of the Models4Pastures project within the framework of FACCE‐JPI. Lutz Merbold and Kathrin Fuchs acknowledge funding received for the Swiss contribution to Models4Pastures (FACCE‐JPI project, SNSF funded contract: 40FA40_154245/1) and for the Doc. Mobility fellowship (SNSF funded project: P1EZP2_172121). Lutz Merbold further acknowledges the support received for CGIAR Fund Council, Australia (ACIAR), Irish Aid, the European Union, the Netherlands, New Zealand, Switzerland, UK, USAID, and Thailand for funding to the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) as well as for the CGIAR Research Program on Livestock. The NZ contributors acknowledge funding from the New Zealand Government Ministry of Primary Industries to support the aims of the Livestock Research Group of the Global Research Alliance on Agricultural Greenhouse Gases and from AgResearch's Strategic Science Investment Fund (the Forages for Reduced Nitrate Leaching (FRNL) research program). The UK partners acknowledge funding by DEFRA and the RCUK projects: N‐Circle (BB/N013484/1), UGRASS (NE/M016900/1), and GREENHOUSE (NE/K002589/1). R.M. Rees and C.F.E. Topp also received funding from the Scottish Government Strategic Research Programme. Lorenzo Brilli, Camilla Dibari, and Marco Bindi received funding from the Italian Ministry of Agricultural Food and Forestry Policies (MiPAAF). The FR partners acknowledge funding from CN‐MIP project funded by the French National Research Agency (ANR‐13‐JFAC‐0001) and from ADEME (no. 12‐60‐C0023). Open access funding enabled and organized by Projekt DEAL Publisher Copyright: ©2020. The Authors. Open access funding enabled and organized by Projekt DEALPeer reviewedPublisher PD

    First Observation of Coherent π0\pi^0 Production in Neutrino Nucleus Interactions with Eν<E_{\nu}< 2 GeV

    Get PDF
    The MiniBooNE experiment at Fermilab has amassed the largest sample to date of π0\pi^0s produced in neutral current (NC) neutrino-nucleus interactions at low energy. This paper reports a measurement of the momentum distribution of π0\pi^0s produced in mineral oil (CH2_2) and the first observation of coherent π0\pi^0 production below 2 GeV. In the forward direction, the yield of events observed above the expectation for resonant production is attributed primarily to coherent production off carbon, but may also include a small contribution from diffractive production on hydrogen. Integrated over the MiniBooNE neutrino flux, the sum of the NC coherent and diffractive modes is found to be (19.5 ±\pm1.1 (stat) ±\pm2.5 (sys))% of all exclusive NC π0\pi^0 production at MiniBooNE. These measurements are of immediate utility because they quantify an important background to MiniBooNE's search for νμνe\nu_{\mu} \to \nu_e oscillations.Comment: Submitted to Phys. Lett.
    corecore