12 research outputs found

    Finding active galactic nuclei through Fink

    Full text link
    We present the Active Galactic Nuclei (AGN) classifier as currently implemented within the Fink broker. Features were built upon summary statistics of available photometric points, as well as color estimation enabled by symbolic regression. The learning stage includes an active learning loop, used to build an optimized training sample from labels reported in astronomical catalogs. Using this method to classify real alerts from the Zwicky Transient Facility (ZTF), we achieved 98.0% accuracy, 93.8% precision and 88.5% recall. We also describe the modifications necessary to enable processing data from the upcoming Vera C. Rubin Observatory Large Survey of Space and Time (LSST), and apply them to the training sample of the Extended LSST Astronomical Time-series Classification Challenge (ELAsTiCC). Results show that our designed feature space enables high performances of traditional machine learning algorithms in this binary classification task.Comment: Accepted for the Machine learning and the Physical Sciences workshop of NeurIPS 202

    Supernova search with active learning in ZTF DR3

    Full text link
    We provide the first results from the complete SNAD adaptive learning pipeline in the context of a broad scope of data from large-scale astronomical surveys. The main goal of this work is to explore the potential of adaptive learning techniques in application to big data sets. Our SNAD team used Active Anomaly Discovery (AAD) as a tool to search for new supernova (SN) candidates in the photometric data from the first 9.4 months of the Zwicky Transient Facility (ZTF) survey, namely, between March 17 and December 31 2018 (58194 < MJD < 58483). We analysed 70 ZTF fields at a high galactic latitude and visually inspected 2100 outliers. This resulted in 104 SN-like objects being found, 57 of which were reported to the Transient Name Server for the first time and with 47 having previously been mentioned in other catalogues, either as SNe with known types or as SN candidates. We visually inspected the multi-colour light curves of the non-catalogued transients and performed fittings with different supernova models to assign it to a probable photometric class: Ia, Ib/c, IIP, IIL, or IIn. Moreover, we also identified unreported slow-evolving transients that are good superluminous SN candidates, along with a few other non-catalogued objects, such as red dwarf flares and active galactic nuclei. Beyond confirming the effectiveness of human-machine integration underlying the AAD strategy, our results shed light on potential leaks in currently available pipelines. These findings can help avoid similar losses in future large-scale astronomical surveys. Furthermore, the algorithm enables direct searches of any type of data and based on any definition of an anomaly set by the expert.Comment: 22 pages with appendix, 12 figures, 2 tables, accepted for publication in Astronomy and Astrophysic

    Estimate of the Biological Dose in Hadrontherapy Using GATE

    No full text
    International audienceFor the evaluation of the biological effects, Monte Carlo toolkits were used to provide an RBE-weighted dose using databases of survival fraction coefficients predicted through biophysical models. Biophysics models, such as the mMKM and NanOx models, have previously been developed to estimate a biological dose. Using the mMKM model, we calculated the saturation corrected dose mean specific energy z1D* (Gy) and the dose at 10% D10 for human salivary gland (HSG) cells using Monte Carlo Track Structure codes LPCHEM and Geant4-DNA, and compared these with data from the literature for monoenergetic ions. These two models were used to create databases of survival fraction coefficients for several ion types (hydrogen, carbon, helium and oxygen) and for energies ranging from 0.1 to 400 MeV/n. We calculated α values as a function of LET with the mMKM and the NanOx models, and compared these with the literature. In order to estimate the biological dose for SOBPs, these databases were used with a Monte Carlo toolkit. We considered GATE, an open-source software based on the GEANT4 Monte Carlo toolkit. We implemented a tool, the BioDoseActor, in GATE, using the mMKM and NanOx databases of cell survival predictions as input, to estimate, at a voxel scale, biological outcomes when treating a patient. We modeled the HIBMC 320 MeV/u carbon-ion beam line. We then tested the BioDoseActor for the estimation of biological dose, the relative biological effectiveness (RBE) and the cell survival fraction for the irradiation of the HSG cell line. We then tested the implementation for the prediction of cell survival fraction, RBE and biological dose for the HIBMC 320 MeV/u carbon-ion beamline. For the cell survival fraction, we obtained satisfying results. Concerning the prediction of the biological dose, a 10% relative difference between mMKM and NanOx was reported

    Finding active galactic nuclei through Fink

    No full text
    International audienceWe present the Active Galactic Nuclei (AGN) classifier as currently implemented within the Fink broker. Features were built upon summary statistics of available photometric points, as well as color estimation enabled by symbolic regression. The learning stage includes an active learning loop, used to build an optimized training sample from labels reported in astronomical catalogs. Using this method to classify real alerts from the Zwicky Transient Facility (ZTF), we achieved 98.0% accuracy, 93.8% precision and 88.5% recall. We also describe the modifications necessary to enable processing data from the upcoming Vera C. Rubin Observatory Large Survey of Space and Time (LSST), and apply them to the training sample of the Extended LSST Astronomical Time-series Classification Challenge (ELAsTiCC). Results show that our designed feature space enables high performances of traditional machine learning algorithms in this binary classification task

    Finding active galactic nuclei through Fink

    No full text
    International audienceWe present the Active Galactic Nuclei (AGN) classifier as currently implemented within the Fink broker. Features were built upon summary statistics of available photometric points, as well as color estimation enabled by symbolic regression. The learning stage includes an active learning loop, used to build an optimized training sample from labels reported in astronomical catalogs. Using this method to classify real alerts from the Zwicky Transient Facility (ZTF), we achieved 98.0% accuracy, 93.8% precision and 88.5% recall. We also describe the modifications necessary to enable processing data from the upcoming Vera C. Rubin Observatory Large Survey of Space and Time (LSST), and apply them to the training sample of the Extended LSST Astronomical Time-series Classification Challenge (ELAsTiCC). Results show that our designed feature space enables high performances of traditional machine learning algorithms in this binary classification task

    A deep Hα survey of the Milky Way VI. The l = 332° area

    No full text
    The Galactic plane has been observed between l = 330° to l = 336° as part of a velocity resolved Hα survey of the southern Milky Way using a scaning Fabry-Perot on a 36 cm telescope. The detailed analysis of the resultant Hα profiles reveals the presence of several layers of ionized gas with different velocities over the surveyed region. We have studied in detail both the 2-D spatial and velocity structure of the HII regions RCW102, RCW104 and RCW106. Combining these Ha observations with stellar and radio data we provide estimates for the most probable distances of these different layers. The first layer at -5 km s -1 is local emission linked to the Sco-Cen association at 170 pc. The next layer, around -24 km s -1, is at 1.9 kpc and traces the near section of the Sagittarius-Carina arm. Well connected to the Sagittarius-Carina arm portions traced in the adjacent regions (l = 328° and l = 338° area), the arm, in this longitude range, clearly shows and confirms the departure from a logarithmic spiral. The Scutum-Crux arm is also traced in this area by faint and diffuse emission at -40 km s -1 which can be placed at 3.2 kpc. The layer at -52 km s -1 is the major spiral-arm feature of the studied area; its most probable stellar distance is 4.2 kpc. An important emission component is also observed at -65 km s -1 in the southern part of the surveyed area. This mainly patchy and filamentary emission we identify as the possible optical counterpart of a Supernovae remnant centered at l = 332.0°, b = -3.2°. Finally, two complexes have been determined around 12.5 kpc which places them in the far section of the Norma arm.link_to_subscribed_fulltex

    Could SNAD160 be a Pair-instability Supernova?

    No full text
    International audienceThe SNAD team reports the discovery of SNAD160 (AT2018lzi) within the Zwicky Transient Facility third data release. The transient has been found using the active anomaly detection algorithm, an adaptive learning strategy aimed at incorporating expert knowledge into machine learning models. Our preliminary analysis shows that SNAD160 could be a superluminous supernova powered by a pair-instability mechanism—its light curve behavior is consistent with the observed slow rise and slow decay expected from these events

    The Most Interesting Anomalies Discovered in ZTF DR17 from the SNAD-VI Workshop

    No full text
    International audienceThe SNAD team has developed an adaptive learning algorithm, named Pine Forest (PF), to enhance anomaly detection in astronomical data. Recognizing the essential role of human engagement in the discovery process, PF presents outliers to a human expert for review, and filters out trees which disagree with the feedback provided. During the sixth annual SNAD workshop (https://snad.space/2023/), held in 2023 July, we applied PF to the Zwicky Transient Facility’s DR17 data. Interesting discoveries include long-duration objects such as supernovae, along with fast transients like red dwarf flares and one microlensing event. As a result, new variable stars were identified and labeled in the SNAD knowledge database

    The SNAD Viewer: Everything You Want to Know about Your Favorite ZTF Object

    No full text
    International audienceWe describe the SNAD Viewer, a web portal for astronomers which presents a centralized view of individual objects from the Zwicky Transient Facility’s (ZTF) data releases, including data gathered from multiple publicly available astronomical archives and data sources. Initially built to enable efficient expert feedback in the context of adaptive machine learning applications, it has evolved into a full-fledged community asset that centralizes public information and provides a multi-dimensional view of ZTF sources. For users, we provide detailed descriptions of the data sources and choices underlying the information displayed in the portal. For developers, we describe our architectural choices and their consequences such that our experience can help others engaged in similar endeavors or in adapting our publicly released code to their requirements. The infrastructure we describe here is scalable and flexible and can be personalized and used by other surveys and for other science goals. The Viewer has been instrumental in highlighting the crucial roles domain experts retain in the era of big data in astronomy. Given the arrival of the upcoming generation of large-scale surveys, we believe similar systems will be paramount in enabling an optimal exploitation of the scientific potential enclosed in current terabyte and future petabyte-scale data sets. The Viewer is publicly available online at https://ztf.snad.space

    Supernova search with active learning in ZTF DR3

    No full text
    In order to explore the potential of adaptive learning techniques to big data sets, the SNAD team used Active Anomaly Discovery (AAD) as a tool to search for new supernova (SN) candidates in the photometric data from the first 9.4 months of the Zwicky Transient Facility survey - between 2018 March 17 and December 31 (58194 < MJD < 58483). We analysed 70 ZTF fields with high galactic latitude and visually inspected 2100 outliers. This resulted in 104 supernova-like objects found, 57 of them were reported to the Transient Name Server for the first time and 47 were previously mentioned in other catalogues either as supernovae with known types or as supernova candidates. We visually inspected the multi-colour light curves of the non-catalogued transients and performed their fit with different supernova models to assign it to a proper class: Ia, Ib/c, IIP, IIL, IIn. Moreover, we also identified unreported slow-evolving transients which are good superluminous SN candidates, and a few others non-catalogued objects, such as red dwarf flares and active galactic nuclei. Beyond confirming the effectiveness of human-machine integration underlying the AAD strategy, our results shed light on potential leaks in currently available pipelines and can help avoid similar losses in future large scale astronomical surveys. The algorithm enables directed search of any type of data and definition of anomaly chosen by the expert
    corecore