14 research outputs found

    BMP4 induction of trophoblast from mouse embryonic stem cells in defined culture conditions on laminin

    Get PDF
    Because mouse embryonic stem cells (mESCs) do not contribute to the formation of extraembryonic placenta when they are injected into blastocysts, it is believed that mESCs do not differentiate into trophoblast whereas human embryonic stem cells (hESCs) can express trophoblast markers when exposed to bone morphogenetic protein 4 (BMP4) in vitro. To test whether mESCs have the potential to differentiate into trophoblast, we assessed the effect of BMP4 on mESCs in a defined monolayer culture condition. The expression of trophoblast-specific transcription factors such as Cdx2, Dlx3, Esx1, Gata3, Hand1, Mash2, and Plx1 was specifically upregulated in the BMP4-treated differentiated cells, and these cells expressed trophoblast markers. These results suggest that BMP4 treatment in defined culture conditions enabled mESCs to differentiate into trophoblast. This differentiation was inhibited by serum or leukemia inhibitory factor, which are generally used for mESC culture. In addition, we studied the mechanism underlying BMP4-directed mESC differentiation into trophoblast. Our results showed that BMP4 activates the Smad pathway in mESCs inducing Cdx2 expression, which plays a crucial role in trophoblast differentiation, through the binding of Smad protein to the Cdx2 genomic enhancer sequence. Our findings imply that there is a common molecular mechanism underlying hESC and mESC differentiation into trophoblast

    Low Tech Hacking: Street Smarts for Security Professionals

    No full text
    Criminals using hacking techniques can cost corporations, governments, and individuals millions of dollars each year. While the media focuses on the grand-scale attacks that have been planned for months and executed by teams and countries, there are thousands more that aren't broadcast. Low Tech Hacking focuses on the everyday hacks that, while simple in nature, actually add up to the most significant losses. Attackers are using common techniques like social engineering, wireless hacking, and targeting and surveillance to gain access to valuable data. This book contains detailed description

    The Response of C57BL/6J and BALB/cJ Mice to Increased Housing Density

    No full text
    Increased numbers of mice housed per cage (that is, increased housing density) is seen as 1 way to reduce the costs of conducting biomedical research. Current empirically derived guidelines are based on the area provided per mouse depending on body weight as documented in the Guide for the Care and Use of Laboratory Animals. The current study aimed to provide a more scientific basis for housing density by examining the response of C57BL/6J and BALB/cJ mice to increased housing density from weaning to 5 mo of age, to determine those parameters most useful for future larger-scale studies. A wide range of phenotypic characteristics—including growth rate, body composition, hematology, serum biochemistry, hormone and metabolite measurements, in-cage telemetry, behavior, and cage microenvironment—was examined at various time points. The parameters showing greatest changes were: growth rate, which was significantly reduced in animals at the highest density; adrenal gland size, the proportion of adrenal cortex, and concentration of fecal corticosterone metabolites, all of which were increased at higher densities; and anxiety and barbering, which were more pronounced at higher densities. Cage microenvironment deteriorated with increasing density, but the increases in measured parameters were small, and their biologic impact, if any, was not apparent. The current findings indicate that mouse housing density can be increased 50% to 100% above the current recommendations (as floor area per mouse) with no or few apparent affects on mouse overall wellbeing. However, weight gain, fecal corticosterone metabolite levels, and barbering differed significantly with housing density and therefore are suggested as good measures of the response to alterations in housing

    Association of urinary bisphenols during pregnancy with maternal, cord blood and childhood thyroid function

    Get PDF
    © 2020 The Authors Background: Most pregnant women are exposed to bisphenols, a group of chemicals that can interfere with various components of the thyroid system. Objectives: To investigate the association of maternal urinary bisphenol concentrations during pregnancy with maternal, newborn and early childhood thyroid function. Methods: This study was embedded in Generation R, a prospective, population-based birth cohort (Rotterdam, the Netherlands). Maternal urine samples were analyzed for eight bisphenols at early (25 weeks) pregnancy. Maternal serum thyroid stimulating hormone (TSH), free thyroxine (FT4) and total thyroxine (TT4) were measured in early pregnancy and child TSH and FT4 were measured in cord blood and childhood. Results: The final study population comprised 1,267 mothers, 853 newborns and 882 children. Of the eight bisphenols measured, only bisphenol A (BPA) was detected in >50% of samples at all three time-points and bisphenol S (BPS) at the first time-point. There was no association of BPA or the bisphenol molar sum with maternal thyroid function. Higher BPS concentrations were associated with a higher maternal TT4 (β [95% CI] per 1 (natural-log) unit increase: 0.97 [0.03 to 1.91]) but there was no association with TSH or FT4. Furthermore, higher BPS was associated with an attenuation of the association between maternal FT4 and TSH (Pinteraction = 0.001). There was no association of early or mid-pregnancy BPA or early pregnancy BPS with cord blood or childhood TSH and FT4. A higher late pregnancy maternal BPA exposure was associated with a higher TSH in female newborns (Pinteraction = 0.06) and a higher FT4 during childhood in males (Pinteraction = 0.08). Discussion: Our findings show that exposure to bisphenols may interfere with the thyroid system during pregnancy. Furthermore, the potential developmental toxicity of exposure to bisphenols during pregnancy could affect the thyroid system in the offspring in a sex-specific manner.grant RO1ES022972 and RO1ES029779-01 from the National Institutes of Health, USA
    corecore