274 research outputs found

    Effect of projectile nose shape on ballistic resistance of interstitial-free steel sheets

    Get PDF
    In this paper an experimental and numerical work is reported concerning the process of perforation of thin steel plates using different projectile nose shapes. The main goal is to analyze how the projectile shape may change the ballistic properties of materials. A wide range of impact velocities from 35 to 180 m/s has been covered during the tests. All the projectiles were 13 mm in diameter and the targets were 1 mm thick, as such the projectile can be regarded as rigid and the target sheets were of interstitial-free (IF) steel. The mass ratio (projectile mass/steel sheet mass) and the ratio between the span of the steel sheet and the diameter of the projectile were kept constant, equal to 0.38 and 3.85 respectively. To define the thermoviscoplastic behavior of the target material, the Rusinek-Klepaczko (RK) constitutive model [1] was used. The complete identification of the material constants was done based on a rigorous material characterization. Numerical simulations of some experimental tests were carried out using a non-linear finite element code ABAQUS/Explicit. It was found that the numerical models are able to describe the physical mechanisms in the perforation process with a good accuracy.The National Centre of Research and Development under the grant WND-DEM-1-203/00

    The cohesive element approach to dynamic fragmentation: The question of energy convergence

    Get PDF
    The cohesive element approach is getting increasingly popular for simulations in which a large amount of cracking occurs. Naturally, a robust representation of fragmentation mechanics is contingent to an accurate description of dissipative mechanisms in form of cracking and branching. A number of cohesive law models have been proposed over the years and these can be divided into two categories: cohesive laws that are initially rigid and cohesive laws that have an initial elastic slope. This paper focuses on the initially rigid cohesive law, which is shown to successfully capture crack branching mechanisms in simulations. The paper addresses the issue of energy convergence of the finite-element solution for high-loading rate fragmentation problems, within the context of small strain linear elasticity. These results are obtained in an idealized one-dimensional setting, and they provide new insight for determining proper cohesive zone spacing as function of loading rate. The findings provide a useful roadmap for choosing mesh sizes and mesh size distributions in two and three-dimensional fragmentation problems. Remarkably, introducing a slight degree of mesh randomness is shown to improve by up to two orders of magnitude the convergence of the fragmentation problem

    Experimental and numerical analysis of the martensitic transformation in AISI 304 steel sheets subjected to perforation by conical and hemispherical projectiles

    Get PDF
    In this work, an experimental and numerical analysis of the martensitic transformation in AISI 304 steel sheets subjected to perforation by conical and hemispherical projectiles is conducted. Experiments are performed using a pneumatic gas gun for with the impact velocities in the range of 35 m/s < V-0 < 200 m/s. Two target thicknesses are examined, t(1) = 0.5 mm and t(2) = 1.0 mm. The experimental setup enabled the determination of the impact velocity, the residual velocity and the failure mode of the steel sheets. The effect of the projectile nose shape on the target's capacity for energy absorption is evaluated. Moreover, martensite is detected in all the impacted samples, and the role played by the projectile nose shape on the transformation is highlighted. A three-dimensional model is developed in ABAQUS/Explicit to simulate the perforation tests. The material is defined via the constitutive model developed by Zaera et al. (2012) to describe the strain-induced martensitic transformation occurring in metastable austenitic steels at high strain rates. The finite element results are compared with the experimental evidence, and satisfactory matching is observed over the entire range of impact velocities tested and for both projectile configurations and target thicknesses considered. The numerical model succeeds in describing the perforation mechanisms associated with each projectile-target configuration analyzed. The roles played by impact velocity, target thickness and projectile nose shape on the martensitic transformation are properly captured.The researchers of the University Carlos III of Madrid are in debted to the Comunidad Autónoma de Madrid (Project CCG10 UC3M/DPI 5596) and to the Ministerio de Ciencia e Innovación de España (DPI2011 24068) for the financial support received which allowed conducting part of this work

    Temperature measurements on ES steel sheets subjected to perforation by hemispherical projectiles

    Get PDF
    In this paper is reported a study on the behaviour of ES mild steel sheets subjected to perforation by hemispherical projectiles. Experiments have been conducted using a pneumatic cannon within the range of impact velocities 5m/s<=V0<=60m/s. The experimental setup allowed evaluating initial velocity, failure mode and post-mortem deflection of the plates. The tests have been recorded using high speed infrared camera. It made possible to obtain temperature contours of the specimen during impact. Thus, special attention is focussed on the thermal softening of the material which is responsible for instabilities and failure. Assuming adiabatic conditions of deformation, the increase of temperature may be related to the plastic deformation. The critical strain leading to target-failure is evaluated coupling temperature measurements with numerical simulations and with analytical predictions obtained by means of the Rusinek-Klepaczko constitutive relation [Rusinek, A., Klepaczko, J.R. Shear testing of sheet steel at wide range of strain rates and a constitutive relation with strain rate and temperature dependence of the flow stress. Int J Plasticity. 2001; 17, 87-115]. It has been estimated that the process of localization of plastic deformation which leads to target-failure involves local values close to for the boundary value problem approached. Subsequently, this failure strain level has been applied to simulate the perforation process and the numerical results obtained show satisfactory agreement with the experiments in terms of ballistic limit, temperature increase and failure mode of the target.The researchers of the University Carlos III of Madrid are indebted to the Comunidad Autónoma de Madrid (Project CCG08 UC3M/MAT 4464) and to the Ministerio de Ciencia e Innovación de España (Project DPI/2008 06408)Publicad

    Material and structural behaviour of PMMA from low temperatures to over the glass transition: Quasi-static and dynamic loading

    Get PDF
    This work aims at characterizing the mechanical behaviour of polymethyl-methacrylate (PMMA) under high velocity impact conditions over a wide range of testing temperatures. To this end, the mechanical response at uniaxial compression is studied for both quasi-static and dynamic conditions covering testing temperatures below, at and above glass transition. A pseudo-brittle to ductile transition in the failure of PMMA is observed at a threshold that depends on testing temperature and strain rate. This analysis allows for the interpretation of the perforation impact tests and to explain the principal deformation and failure mechanisms. To complete the study, the Richeton model to predict yielding is revisited. Finally, we provide a new constitutive model for finite deformations to further identify the deformation mechanisms governing the mechanical behaviour of PMMA and the influence of temperature and strain rate on them.D. Garcia-Gonzalez acknowledges support from the Talent Attraction grant (CM 2018 - 2018-T2/IND-9992) from the Comunidad de Madrid

    A constitutive model for analyzing martensite formation in austenitic steels deforming at high strain rates

    Get PDF
    This study presents a constitutive model for steels exhibiting SIMT, based on previous sem inal works, and the corresponding methodology to estimate their parameters. The model includes temperature effects in the phase transformation kinetics, and in the softening of each solid phase through the use of a homogenization technique. The model was validated with experimental results of dynamic tensile tests on AISI 304 sheet steel specimens, and their predictions correlate well with the experimental evidence in terms of macroscopic stress strain curves and martensite volume fraction formed at high strain rates. The work shows the value of considering temperature effects in the modeling of metastable austen itic steels submitted to impact conditions. Regarding most of the works reported in the lit erature on SIMT, modeling of the martensitic transformation at high strain rates is the distinctive feature of the present paper.The researchers of the University Carlos III of Madrid are indebted to the Comunidad Autónoma de Madrid (Project CCG10 UC3M/DPI 5596)) and to the Ministerio de Ciencia e Innovación de España (Project DPI/2008 06408) for the financial support received which allowed conducting part of this work. The authors express their thanks to Mr. Philippe and Mr. Tobisch from the company Zwick for the facilities provided to perform the tensile tests at high strain rates.Publicad

    Surface Quality of a Work Material Influence on Vibrations in a Cutting Process

    Full text link
    The problem of stability in the machining processes is an important task. It is strictly connected with the final quality of a product. In this paper we consider vibrations of a tool-workpiece system in a straight turning process induced by random disturbances and their effect on a product surface. Basing on experimentally obtained system parameters we have done the simulations using one degree of freedom model. The noise has been introduced to the model by the Langevin equation. We have also analyzed the product surface shape and its dependence on the level of noise.Comment: 12 pages, PDF of figures can be obtained from http://archimedes.pol.lublin.pl/~raf/graf/fpic.pd

    Numerical simulation of the effect of adiabatic temperature increase in martensitic transformation of austenitic steels

    Get PDF
    Abstract This work presents a constitutive model for metastable austenitic steels exhibiting Strain Induced Martensitic Transformation (SIMT). Based on the description of the kinetics of phase transformation proposed by Olson and Cohen [3], and later generalized to 3D by Stringfellow et al
    corecore