6 research outputs found

    Bradykinin or Acetylcholine as Vasodilators to Test Endothelial Venous Function in Healthy Subjects

    Get PDF
    INTRODUCTION: The evaluation of endothelial function has been performed in the arterial bed, but recently evaluation within the venous system has also been explored. Endothelial function studies employ different drugs that act as endothelium-dependent vasodilatory response inductors. OBJECTIVES: The aim of this study is to compare the endothelium-dependent venous vasodilator response mediated by either acetylcholine or bradykinin in healthy volunteers. METHODS AND RESULTS: Changes in vein diameter after phenylephrine-induced venoconstriction were measured to compare venodilation induced by acetylcholine or bradykinin (linear variable differential transformer dorsal hand vein technique). We studied 23 healthy volunteers; 31% were male, and the subject had a mean age of 33 ± 8 years and a mean body mass index of 23 ± 2 kg/m2. The maximum endothelium-dependent venodilation was similar for both drugs (p = 0.13), as well as the mean responses for each dose of both drugs (r = 0.96). The maximum responses to acetylcholine and bradykinin also had good agreement. CONCLUSION: There were no differences between acetylcholine and bradykinin as venodilators in this endothelial venous function investigation

    ABC<sub>2</sub>-SPH risk score for in-hospital mortality in COVID-19 patients

    Get PDF
    Objectives: The majority of available scores to assess mortality risk of coronavirus disease 2019 (COVID-19) patients in the emergency department have high risk of bias. Therefore, this cohort aimed to develop and validate a score at hospital admission for predicting in-hospital mortality in COVID-19 patients and to compare this score with other existing ones. Methods: Consecutive patients (≥ 18 years) with confirmed COVID-19 admitted to the participating hospitals were included. Logistic regression analysis was performed to develop a prediction model for in-hospital mortality, based on the 3978 patients admitted between March–July, 2020. The model was validated in the 1054 patients admitted during August–September, as well as in an external cohort of 474 Spanish patients. Results: Median (25–75th percentile) age of the model-derivation cohort was 60 (48–72) years, and in-hospital mortality was 20.3%. The validation cohorts had similar age distribution and in-hospital mortality. Seven significant variables were included in the risk score: age, blood urea nitrogen, number of comorbidities, C-reactive protein, SpO2/FiO2 ratio, platelet count, and heart rate. The model had high discriminatory value (AUROC 0.844, 95% CI 0.829–0.859), which was confirmed in the Brazilian (0.859 [95% CI 0.833–0.885]) and Spanish (0.894 [95% CI 0.870–0.919]) validation cohorts, and displayed better discrimination ability than other existing scores. It is implemented in a freely available online risk calculator (https://abc2sph.com/). Conclusions: An easy-to-use rapid scoring system based on characteristics of COVID-19 patients commonly available at hospital presentation was designed and validated for early stratification of in-hospital mortality risk of patients with COVID-19.</p

    Implementation of a Brazilian Cardioprotective Nutritional (BALANCE) Program for improvement on quality of diet and secondary prevention of cardiovascular events: A randomized, multicenter trial

    Get PDF
    Background: Appropriate dietary recommendations represent a key part of secondary prevention in cardiovascular disease (CVD). We evaluated the effectiveness of the implementation of a nutritional program on quality of diet, cardiovascular events, and death in patients with established CVD. Methods: In this open-label, multicenter trial conducted in 35 sites in Brazil, we randomly assigned (1:1) patients aged 45 years or older to receive either the BALANCE Program (experimental group) or conventional nutrition advice (control group). The BALANCE Program included a unique nutritional education strategy to implement recommendations from guidelines, adapted to the use of affordable and regional foods. Adherence to diet was evaluated by the modified Alternative Healthy Eating Index. The primary end point was a composite of all-cause mortality, cardiovascular death, cardiac arrest, myocardial infarction, stroke, myocardial revascularization, amputation, or hospitalization for unstable angina. Secondary end points included biochemical and anthropometric data, and blood pressure levels. Results: From March 5, 2013, to Abril 7, 2015, a total of 2534 eligible patients were randomly assigned to either the BALANCE Program group (n = 1,266) or the control group (n = 1,268) and were followed up for a median of 3.5 years. In total, 235 (9.3%) participants had been lost to follow-up. After 3 years of follow-up, mean modified Alternative Healthy Eating Index (scale 0-70) was only slightly higher in the BALANCE group versus the control group (26.2 ± 8.4 vs 24.7 ± 8.6, P <.01), mainly due to a 0.5-serving/d greater intake of fruits and of vegetables in the BALANCE group. Primary end point events occurred in 236 participants (18.8%) in the BALANCE group and in 207 participants (16.4%) in the control group (hazard ratio, 1.15; 95% CI 0.95-1.38; P =.15). Secondary end points did not differ between groups after follow-up. Conclusions: The BALANCE Program only slightly improved adherence to a healthy diet in patients with established CVD and had no significant effect on the incidence of cardiovascular events or death. © 2019 The Author
    corecore