88 research outputs found

    A novel real-world ecotoxicological dataset of pelagic microbial community responses to wastewater.

    Full text link
    Real-world observational datasets that record and quantify pressure-stressor-response linkages between effluent discharges and natural aquatic systems are rare. With global wastewater volumes increasing at unprecedented rates, it is urgent that the present dataset is available to provide the necessary information about microbial community structure and functioning. Field studies were performed at two time-points in the Austral summer. Single-species and microbial community whole effluent toxicity (WET) testing was performed at a complete range of effluent concentrations and two salinities, with accompanying environmental data to provide new insights into nutrient and organic matter cycling, and to identify ecotoxicological tipping points. The two salinity regimes were chosen to investigate future scenarios based on a predicted salinity increase at the study site, typical of coastal regions with rising sea levels globally. Flow cytometry, amplicon sequencing of 16S and 18S rRNA genes and micro-fluidic quantitative polymerase-chain reactions (MFQPCR) were used to determine chlorophyll-a and total bacterial cell numbers and size, as well as taxonomic and functional diversity of pelagic microbial communities. This strong pilot dataset could be replicated in other regions globally and would be of high value to scientists and engineers to support the next advances in microbial ecotoxicology, environmental biomonitoring and estuarine water quality modelling

    Numerical simulation of skin transport using Parareal

    Get PDF
    In silico investigation of skin permeation is an important but also computationally demanding problem. To resolve all scales involved in full detail will not only require exascale computing capacities but also suitable parallel algorithms. This article investigates the applicability of the time-parallel Parareal algorithm to a brick and mortar setup, a precursory problem to skin permeation. The C++ library Lib4PrM implementing Parareal is combined with the UG4 simulation framework, which provides the spatial discretization and parallelization. The combination’s performance is studied with respect to convergence and speedup. It is confirmed that anisotropies in the domain and jumps in diffusion coefficients only have a minor impact on Parareal’s convergence. The influence of load imbalances in time due to differences in number of iterations required by the spatial solver as well as spatio-temporal weak scaling is discussed

    Rings in the Solar System: a short review

    Full text link
    Rings are ubiquitous around giant planets in our Solar System. They evolve jointly with the nearby satellite system. They could form either during the giant planet formation process or much later, as a result of large scale dynamical instabilities either in the local satellite system, or at the planetary scale. We review here the main characteristics of rings in our solar system, and discuss their main evolution processes and possible origin. We also discuss the recent discovery of rings around small bodies.Comment: Accepted for the Handbook of Exoplanet

    Schistosoma mansoni Enhances Host Susceptibility to Mucosal but Not Intravenous Challenge by R5 Clade C SHIV

    Get PDF
    Parasitic infections have been postulated to increase host susceptibility to HIV-1. We previously demonstrated that rhesus monkeys with active schistosomiasis were significantly more likely to become systemically infected after intrarectal exposure to an R5-tropic clade C simian-human immunodeficiency virus then were parasite-free control animals. However, we could not address whether parasites exert their effect at the mucosal level or systemically. To address the latter possibility, we measured the virus doses needed to achieve systemic infection after intravenous exposure of parasite-free or parasite-positive monkeys using the identical virus stock. None of the viral parameters tested in these two groups of monkeys were statistically significantly different. These results suggest that schistosomiasis modulates susceptibility to immunodeficiency virus acquisition predominantly at the mucosal level. Treatment for parasitic infections in populations at higher risk for HIV-1 acquisition could represent a cost-effective approach to slow the spread of HIV-1, which is predominantly transmitted through mucosal routes

    Crystal and melt inclusion timescales reveal the evolution of magma migration before eruption

    Get PDF
    Volatile element concentrations measured in melt inclusions are a key tool used to understand magma migration and degassing, although their original values may be affected by different re-equilibration processes. Additionally, the inclusion-bearing crystals can have a wide range of origins and ages, further complicating the interpretation of magmatic processes. To clarify some of these issues, here we combined olivine diffusion chronometry and melt inclusion data from the 2008 eruption of Llaima volcano (Chile). We found that magma intrusion occurred about 4 years before the eruption at a minimum depth of approximately 8 km. Magma migration and reaction became shallower with time, and about 6 months before the eruption magma reached 3–4 km depth. This can be linked to reported seismicity and ash emissions. Although some ambiguities of interpretation still remain, crystal zoning and melt inclusion studies allow a more complete understanding of magma ascent, degassing, and volcano monitoring data.NRF (Natl Research Foundation, S’pore)MOE (Min. of Education, S’pore)Published versio

    Isolation of Monoclonal Antibodies with Predetermined Conformational Epitope Specificity

    Get PDF
    Existing technologies allow isolating antigen-specific monoclonal antibodies (mAbs) from B cells. We devised a direct approach to isolate mAbs with predetermined conformational epitope specificity, using epitope mimetics (mimotopes) that reflect the three-dimensional structure of given antigen subdomains. We performed differential biopanning using bacteriophages encoding random peptide libraries and polyclonal antibodies (Abs) that had been affinity-purified with either native or denatured antigen. This strategy yielded conformational mimotopes. We then generated mimotope-fluorescent protein fusions, which were used as baits to isolate single memory B cells from rhesus monkeys (RMs). To amplify RM immunoglobulin variable regions, we developed RM-specific PCR primers and generated chimeric simian-human mAbs with predicted epitope specificity. We established proof-of-concept of our strategy by isolating mAbs targeting the conformational V3 loop crown of HIV Env; the new mAbs cross-neutralized viruses of different clades. The novel technology allows isolating mAbs from RMs or other hosts given experimental immunogens or infectious agents

    BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-κB pathway

    Get PDF
    By diversifying antibody biological effector functions, class switch DNA recombination has a central role in the maturation of the antibody response. Here we show that BCR-signalling synergizes with Toll-like receptor (TLR) signalling to induce class switch DNA recombination. BCR-signalling activates the non-canonical NF-κB pathway and enhances the TLR-dependent canonical NF-κB pathway, thereby inducing activation-induced cytidine deaminase (AID), which is critical for class switch DNA recombination. Escherichia coli lipopolysaccharide (LPS) triggers dual TLR4/BCR-signalling and induces hallmarks of BCR-signalling, including CD79a phosphorylation and Ca2+ mobilization, and activates both the NF-κB pathways to induce AID and class switch DNA recombination in a PI(3)K p85α-dependent fashion. CD40-signalling activates the two NF-κB pathways to induce AID and class switch DNA recombination independent of BCR-signalling. Finally, dual BCR/TLR-engaging NP–lipopolysaccharide effectively elicits class-switched NP-specific IgG3 and IgG2b in mice. Thus, by integrating signals of the non-canonical and canonical NF-κB pathways, BCR and TLRs synergize to induce AID and T-cell-independent class switch DNA recombination

    Cutting improves the productivity of lucerne-rich stands used in the revegetation of degraded arable land in a semi-arid environment

    Get PDF
    Understanding the relationships between vegetative and environmental variables is important for revegetation and ecosystem management on the Loess Plateau, China. Lucerne (Medicago sativa L.) has been widely used in the region to improve revegetation, soil and water conservation, and to enhance livestock production. However, there is little information on how environmental factors influence long-term succession in lucerne-rich vegetation. Our objective was to identify the main environmental variables controlling the succession process in lucerne-rich vegetation such that native species are not suppressed after sowing on the Loess Plateau. Vegetation and soil surveys were performed in 31 lucerne fields (three lucerne fields without any management from 2003-2013 and 28 fields containing 11-year-old lucerne with one cutting each year). Time after planting was the most important factor affecting plant species succession. Cutting significantly affected revegetation characteristics, such as aboveground biomass, plant density and diversity. Soil moisture content, soil organic carbon, soil available phosphorus and slope aspect were key environmental factors affecting plant species composition and aboveground biomass, density and diversity. Long-term cutting can cause self-thinning in lucerne, maintain the stability of lucerne production and slow its degradation. For effective management of lucerne fields, phosphate fertilizer should be applied and cutting performed

    Regulation of IL-2 gene expression by Siva and FOXP3 in human T cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Severe autoinflammatory diseases are associated with mutations in the <it>Foxp3 </it>locus in both mice and humans. <it>Foxp3 </it>is required for the development, function, and maintenance of regulatory T cells (T<sub>regs</sub>), a subset of CD4 cells that suppress T cell activation and inflammatory processes. <it>Siva </it>is a pro-apoptotic gene that is expressed across a range of tissues, including CD4 T cells. Siva interacts with three tumor necrosis factor receptor (TNFR) family members that are constitutively expressed on T<sub>reg </sub>cells: CD27, GITR, and OX40.</p> <p>Results</p> <p>Here we report a biophysical interaction between FOXP3 and Siva. We mapped the interaction domains to Siva's C-terminus and to a central region of FOXP3. We showed that <it>Siva </it>repressed IL-2 induction by suppressing <it>IL-2 </it>promoter activity during T cell activation. Siva-1's repressive effect on <it>IL-2 </it>gene expression appears to be mediated by inhibition of NFkappaB, whereas FOXP3 repressed both NFkappaB and NFAT activity.</p> <p>Conclusions</p> <p>In summary, our data suggest that both <it>FOXP3 </it>and <it>Siva </it>function as negative regulators of IL-2 gene expression in T<sub>reg </sub>cells, via suppression of NFAT by <it>FOXP3 </it>and of NFkappaB by both <it>FOXP3 </it>and <it>Siva</it>. Our work contributes evidence for <it>Siva's </it>role as a T cell signalling mediator in addition to its known pro-apoptotic function. Though further investigations are needed, evidence for the biophysical interaction between FOXP3 and Siva invites the possibility that Siva may be important for proper T<sub>reg </sub>cell function.</p

    A Dynamic Landscape for Antibody Binding Modulates Antibody-Mediated Neutralization of West Nile Virus

    Get PDF
    Neutralizing antibodies are a significant component of the host's protective response against flavivirus infection. Neutralization of flaviviruses occurs when individual virions are engaged by antibodies with a stoichiometry that exceeds a required threshold. From this “multiple-hit” perspective, the neutralizing activity of antibodies is governed by the affinity with which it binds its epitope and the number of times this determinant is displayed on the surface of the virion. In this study, we investigated time-dependent changes in the fate of West Nile virus (WNV) decorated with antibody in solution. Experiments with the well-characterized neutralizing monoclonal antibody (MAb) E16 revealed a significant increase in neutralization activity over time that could not be explained by the kinetics of antibody binding, virion aggregation, or the action of complement. Additional kinetic experiments using the fusion-loop specific MAb E53, which has limited neutralizing activity because it recognizes a relatively inaccessible epitope on mature virions, identified a role of virus “breathing” in regulating neutralization activity. Remarkably, MAb E53 neutralized mature WNV in a time- and temperature-dependent manner. This phenomenon was confirmed in studies with a large panel of MAbs specific for epitopes in each domain of the WNV envelope protein, with sera from recipients of a live attenuated WNV vaccine, and in experiments with dengue virus. Given enough time, significant inhibition of infection was observed even for antibodies with very limited, or no neutralizing activity in standard neutralization assays. Together, our data suggests that the structural dynamics of flaviviruses impacts antibody-mediated neutralization via exposure of otherwise inaccessible epitopes, allowing for antibodies to dock on the virion with a stoichiometry sufficient for neutralization
    corecore