5 research outputs found

    MalVac: Database of malarial vaccine candidates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The sequencing of genomes of the Plasmodium species causing malaria, offers immense opportunities to aid in the development of new therapeutics and vaccine candidates through Bioinformatics tools and resources.</p> <p>Methods</p> <p>The starting point of MalVac database is the collection of known vaccine candidates and a set of predicted vaccine candidates identified from the whole proteome sequences of Plasmodium species provided by PlasmoDb 5.4 release (31st October 2007). These predicted vaccine candidates are the adhesins and adhesin-like proteins from Plasmodium species, <it>Plasmodium falciparum</it>, <it>Plasmodium vivax </it>and <it>Plasmodium yoelii</it>. Subsequently, these protein sequences were analysed through 20 publicly available algorithms to obtain Orthologs, Paralogs, BetaWraps, TargetP, TMHMM, SignalP, CDDSearch, BLAST with Human Ref. Proteins, T-cell epitopes, B-cell epitopes, Discotopes, and allergen predictions. All of this information was collected and organized with the ORFids of the protein sequences as primary keys. This information is relevant from the view point of Reverse Vaccinology in facilitating decision making on the most probable choice for vaccine strategy.</p> <p>Results</p> <p>Detailed information on the patterning of the epitopes and other motifs of importance from the viewpoint of reverse vaccinology has been obtained on the most probable protein candidates for vaccine investigation from three major malarial species. Analysis data are available on 161 adhesin proteins from <it>P. falciparum</it>, 137 adhesin proteins from <it>P. vivax </it>and 34 adhesin proteins from <it>P. yoelii</it>. The results are displayed in convenient tabular format and a facility to export the entire data has been provided. The MalVac database is a "community resource". Users are encouraged to export data and further contribute by value addition. Value added data may be sent back to the community either through MalVac or PlasmoDB.</p> <p>Conclusion</p> <p>A web server MalVac for facilitation of the identification of probable vaccine candidates has been developed and can be freely accessed.</p

    FungalRV: adhesin prediction and immunoinformatics portal for human fungal pathogens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The availability of sequence data of human pathogenic fungi generates opportunities to develop Bioinformatics tools and resources for vaccine development towards benefitting at-risk patients.</p> <p>Description</p> <p>We have developed a fungal adhesin predictor and an immunoinformatics database with predicted adhesins. Based on literature search and domain analysis, we prepared a positive dataset comprising adhesin protein sequences from human fungal pathogens <it>Candida albicans, Candida glabrata, Aspergillus fumigatus, Coccidioides immitis, Coccidioides posadasii, Histoplasma capsulatum, Blastomyces dermatitidis, Pneumocystis carinii, Pneumocystis jirovecii and Paracoccidioides brasiliensis</it>. The negative dataset consisted of proteins with high probability to function intracellularly. We have used 3945 compositional properties including frequencies of mono, doublet, triplet, and multiplets of amino acids and hydrophobic properties as input features of protein sequences to Support Vector Machine. Best classifiers were identified through an exhaustive search of 588 parameters and meeting the criteria of best Mathews Correlation Coefficient and lowest coefficient of variation among the 3 fold cross validation datasets. The "FungalRV adhesin predictor" was built on three models whose average Mathews Correlation Coefficient was in the range 0.89-0.90 and its coefficient of variation across three fold cross validation datasets in the range 1.2% - 2.74% at threshold score of 0. We obtained an overall MCC value of 0.8702 considering all 8 pathogens, namely, <it>C. albicans, C. glabrata, A. fumigatus, B. dermatitidis, C. immitis, C. posadasii, H. capsulatum </it>and <it>P. brasiliensis </it>thus showing high sensitivity and specificity at a threshold of 0.511. In case of <it>P. brasiliensis </it>the algorithm achieved a sensitivity of 66.67%. A total of 307 fungal adhesins and adhesin like proteins were predicted from the entire proteomes of eight human pathogenic fungal species. The immunoinformatics analysis data on these proteins were organized for easy user interface analysis. A Web interface was developed for analysis by users. The predicted adhesin sequences were processed through 18 immunoinformatics algorithms and these data have been organized into MySQL backend. A user friendly interface has been developed for experimental researchers for retrieving information from the database.</p> <p>Conclusion</p> <p>FungalRV webserver facilitating the discovery process for novel human pathogenic fungal adhesin vaccine has been developed.</p
    corecore