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Biological Data Modelling and Scripting in R 

 Srinivasan Ramachandran et al.* 
G.N. Ramachandran Knowledge Centre for Genome Informatics,  

Institute of Genomics and Integrative Biology, Delhi,   
India 

1. Introduction 

In this age of Systems and Integrative Biology, development of high throughput genome 
sequencing techniques and other large-scale experimental methods, are generating large 
amount of biological data. Bioinformatics enables us to generate added value to these 
datasets in the form of annotation, classification and pattern extraction. These developments 
demand adequate storage and organization for further analysis. 
In order to unravel the trends and patterns present in such diverse data sets, computational 
platforms with capability for carrying out integrative analysis are required for rapid 
analysis. R language platform is an example of one such platform allowing integrated rapid 
analysis process. The R is a High-level interpreted language suitable for developing new 
computational methods (R Development Core Team. 2010). Computational Biologists use R 
extensively because of the availability of numerous functions and packages including the 
well-known Bioconductor package (Gentleman et al., 2004). The rich inbuilt functions and 
the facility to write functions as well as object oriented programming facilities enable 
development of new packages for rapid analysis. 

2. R platform 

R is a programming language integrated with an R environment, facilitating easy and rapid 
data analysis with the help of its integrated suite of software facilities. Several 
computational biology packages have been developed in R language. Developing 
computational packages in R provides advantage as to carry out the analysis locally and 
also build further tools and scripts. Thus both new applications and extension of existing 
applications can be achieved. R helps accomplishment of complex tasks using simple scripts 
with the help of inbuilt suit of operators aiding in calculations. Also R environment provides 
graphical facilities for data analysis and display. Another major advantage of preparing 
datasets and computational biology tools in R is that a large set of statistical and 
mathematical tools can be applied on the datasets for analysis. R being an open source 
controlled by GNU General Public License allows future developments and customizations 
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more widely. R is maintained by a core group of experts, thus ensuring its availability for 
long life. R in its repository also has a number of packages useful in various fields of 
biology. These packages help solve biological problems in well-structured manner saving 
time and money. 

3. Data modeling for R 

Data modeling for R involves identification of the datasets required for the corresponding 
problem undertaken. The data in the datasets needs to be structured into relevant rows and 
columns. For each field or column only one data type is allowed either character or numeric 
data type. Thereafter standardization or pre-processing of the data in datasets needs to be 
done.  This involves checking the data for any inconsistencies- e.g., removal of blank cells by 
replacing with “Not known” or “None”, checking header names for unwanted symbols like 
?@$%*^ #/, checking columns for single data-type etc. The datasets may be then made into 
R object. Thus data modeling for R plays an important role to make data easily and properly 
read and operated with scripts in R platform. The data type in each column must conform to 
same format for all cells in that column. 

4. S4 object oriented programming 

S4 is the 4th version of S. The major development of S4 over S3 is the integration of functions, 
which allows considering S as an object oriented language. The object system in S4 provides 
a rich way of defining classes, handling inheritance, setting generic methods, validity 
checking and multiple dispatches. This allows development of easy to operate packages for 
rapid data handling and organized structured framework. 

4.1 Setting class and reading data into S4 objects 
Classes with specific representations are created in S4. Thereafter new object belonging to 
the set class may be created. Generic functions may also be made using object of the class: 
1. setClass() is used to set the class of a data 
2. new()is used to create objects of the class set 
3. setGeneric() helps define generics 
4. setMethods() is used to set methods 

5. Decision tree 

A decision tree (Maimon et al., 2005) is a tree like graph that a decision maker can create to 
help select the best amongst several alternative courses of action. Biological problems can be 
solved with help of well-structured and optimized algorithms. These algorithms can be 
represented in the form of decision trees to get better and clear understanding of the 
algorithm process followed to solve the biological problem. 

6. Bioinformatics tools to retrieve biological data 

Bioinformatics in its repository has a large number of tools developed to address diverse 
biological questions. These include investigating relationship between protein structure and 
function, immune response, development of potential vaccine candidates, modeling 
pathways, discovery of drug targets and drugs. 
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6.1 Immunoinformatics data 
The immunoinformatics branch of bioinformatics deals with applying bioinformatics 
principles and tools to the molecular activities of the immune system. Immunoinformatics 
provides databases and predictive tools, useful to fetch data on cells of immune system. This 
data is termed immunological data and can be broadly split into epitope data and allergen 
data. This data is useful for aiding in vaccine discovery, referred to as computer aided vaccine 
design. An important aim here is antigen identification or identification of epitopes capable of 
eliciting immune response. There are various immunoinformatics databases available for 
aiding this process (Chaudhuri et al., 2008; Chaudhuri et al., 2011; Vivona et al., 2008). 
An epitope, also known, as ‘antigenic determinant’ is a surface localized part of antigen 
capable of eliciting an immune response. A B-cell epitope is region of the antigen recognized 
by soluble or membrane bound antibodies. B-cell epitopes are further classified as either 
linear or discontinuous epitopes. Linear epitope is a single continuous stretch of amino acids 
within a protein sequence, whereas epitopes whose residues are distantly placed in the 
sequence but are brought together by physico-chemical folding are termed as discontinuous 
epitopes. 
T cell epitope is a short region presented on the surface of an antigen-presenting cell, where 
they are bound to MHC molecules. These epitopes can be characterized into two types 
based on their recognition by either MHC Class I molecule or Class II molecule. 
Epitope prediction tools form the backbone of immunoinformatics. The main aim of these 
tools is to aid in reliable epitope identification. Various sophisticated T cell epitope 
prediction tools have been developed which help successful epitope prediction.  Some of 
these algorithms are based on artificial neural networks and weight matrices such as 
NetMHC (Lundegaard et al., 2008), predictive IC(50) values IEDB-ARB method (Bui et al., 
2005; Zhang et al., 2008), predicted half-time of dissociation Bimas (Parker et al., 1994), 
quantitative matrices ProPred (Singh et al., 2001). Reliable and accurate B-cell epitope 
prediction is still in development although we have some tools such as ABCpred (Saha et 
al., 2006) and BcePred (Saha et al., 2007). These tools help build the epitope data from 
protein sequences. 
Allergen identification holds major importance in vaccine discovery problem, as it is 
desirable that a candidate vaccine is non-allergic. Allergens are substances (proteins, 
carbohydrates, particles, pollengrains etc.) to which the body mounts a hypersensitive 
immune response typically of Type I. 
Various tools of immunoinformatics have been developed with aim to predict allergenic 
proteins. AlgPred (Saha et al., 2006) allows prediction of allergens through either singly or 
in combination of support vector machine, motif-based method, and searching the database 
of known IgE epitopes. Allermatch (Fiers et al., 2004) performs BLAST search against 
allergen representative peptides using a sliding window approach. The data fetched 
constitute allergen data. The building of Dataclasses with their representations is described 
in Figures 1-4. 

6.1.1 Identification of potential immunogens useful as vaccine candidates 
Immunogen is a substance capable of eliciting an immune response. It possesses epitopes, 
which binds to the B cells or T cells to elicit the response. To identify protein immunogens 
useful as vaccine candidates, bioinformatics approach may be undertaken. There are various 
B-cell and T-cell epitope prediction tools available as mentioned in the previous section. 
These algorithms provide prediction of the epitopes present in the submitted protein 
sequence. Each prediction comes with associated score representing the confidence of 
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prediction. A cutoff score can be set to select the high scoring epitopes and subsequently 
proteins can be identified with high scoring epitopes. Thus the filtered orfids of proteins with 
high scoring B-cell and T-cell epitopes can be selected. The individual results of orfids may be 
analyzed by using the ‘intersect’ operator of R to get the final list of orfids representing the 
proteins meeting conditions of multiple features. It is desirable for the candidate vaccine to be 
non-allergic. Allergen data for the proteins may be fetched using allergen prediction 
immunoinformatics tools to obtain list of non-allergic proteins. Thus list of non-allergen 
proteins with high scoring B-cell and T-cell epitopes may be obtained. B-cell and T-cell data 
have been captured as Secondlayer data. As an example from the Firstlayer data certain sub 
problems to target a potential adhesin vaccine candidate can be stated as- the protein should 
be an adhesin, the protein should not be intracellularly located, it should not have similarity to 
human reference proteins, it should not have more than one transmembrane helix thereby 
facilitating proper cloning and expression. The set of proteins fulfilling all the Firstlayer 
conditions can be intersected with the set of non-allergen proteins. This whole process is 
depicted as decision tree (Figure 5). Similarly the decision tree describing the steps for 
obtaining proteins with high scoring B-cell and T-cell epitopes is shown in Figure 6. 
 

setClass("FirstLayer", representation(ginumber = "numeric", annot = 
"character", length = "numeric", spaanscore = "numeric", paralogs = 
"character", omcl = "character", signalp = "numeric", is_signalp = 
"character", psortbscore = "numeric", subcelllocal = "character", 
tmhelices = "numeric", topotmhelix = "character", betawrap = 
"character", Hrefhits = "character", cddhits = "character")) 

readdata.firstlayer<- 
function(xz){xa<- 
readLines(con = xz); 
tempy<- NULL;for (i in 
seq ( along = 
xa)){tempx<- 
unlist(strsplit(xa[i],"\t"))
;tempy<- c(tempy, 
new("FirstLayer", 
ginumber = 
as.numeric(tempx[1]), 
annot = tempx[2], length 
= as.numeric(tempx[3]), 
spaanscore = 
as.numeric(tempx[4]), 
paralogs = tempx[5], 
omcl = tempx[6], 
signalp = 
as.numeric(tempx[7]), 
is_signalp = tempx[8], 
psortbscore = 
as.numeric(tempx[9]), 
subcelllocal = 
tempx[10],  tmhelices = 
as.numeric(tempx[11]), 
topotmhelix = 
tempx[12], betawrap = 
tempx[13], Hrefhits = 
tempx[14], cddhits = 
tempx[15]  )) }; 
return(tempy)} 

Fig. 1. Representation of S4 Class “FirstLayer” and the R scripts to accomplish the  
construction. 
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setClass("Algpred", representation(ginumber = 
"numeric" , organism="character", ovpr= 
"character",IGEPred="character",IgEepitope="cha
racter",Seqmatched="character",position="numer
ic",PID="numeric", MASTRESULT="character", 
SVMPRED="character",SVMScore="numeric",SV
MThold="numeric" 
,SVMPPV="character",SVMNPV="character",SV
MDipepPRED="character", 
SVMDipepScore="numeric",SVMDipepThold="n
umeric",SVMDipepPPV="character",SVMDipep
NPV="character",BLASTPred="character",HitAR
Ps="character")); setClass("Allermatch", 
representation(ginumber = "numeric" , 
organism="character", prediction 
="character",hit_no= "numeric", db ="character", 
allermatch_id ="character",best_nit_index 
="numeric",no_hits_ident_gt35 
="numeric",perc_hits_gt35 ="numeric", 
perc_ident ="numeric", seq_len_fasta_aligned= 
"numeric",external_link ="character", link_db 
="character",genus_name ="character", 
spc_name="character")) 

readdata.algpred<- function(xz){xa<- 
readLines(con = xz); tempy<- NULL;for (i in seq 
( along = xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- c(tempy, 
new("Algpred", ginumber = 
as.numeric(tempx[1]), organism = tempx[2], 
ovpr= tempx[3] ,IGEPred=tempx[4] 
,IgEepitope=tempx[5] ,Seqmatched= 
tempx[6],position= as.numeric(tempx[7]) ,PID= 
as.numeric(tempx[8]), MASTRESULT=tempx[9], 
SVMPRED=tempx[10], SVMScore= 
as.numeric(tempx[11]),SVMThold= 
as.numeric(tempx[12]) ,SVMPPV= 
tempx[13],SVMNPV= 
tempx[14],SVMDipepPRED= tempx[15], 
SVMDipepScore= 
as.numeric(tempx[16]),SVMDipepThold= 
as.numeric(tempx[17]),SVMDipepPPV= 
tempx[18],SVMDipepNPV= 
tempx[19],BLASTPred= tempx[20],HitARPs= 
tempx[21]))};return(tempy)} 
readdata.allermatch<- function(xz){xa<- 
readLines(con = xz); tempy<- NULL;for (i in seq 
( along = xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- c(tempy, 
new("Allermatch",ginumber = 
as.numeric(tempx[1]), organism = tempx[2], 
prediction= tempx[3], hit_no = 
as.numeric(tempx[4]),db= tempx[5], 
allermatch_id= tempx[6], best_nit_index= 
as.numeric(tempx[7]), no_hits_ident_gt35= 
as.numeric(tempx[8]),perc_hits_gt35= 
as.numeric(tempx[9]),perc_ident= 
as.numeric(tempx[10]), seq_len_fasta_aligned= 
as.numeric(tempx[11]), external_link= 
tempx[12], link_db= tempx[13], genus_name= 
tempx[14], spc_name= 
tempx[15]))};return(tempy)}

 
 
 
 

Fig. 2. General representation of S4 Class for Allergen data. The script for reading the data in 
is given for AlgPred. Similarly the data can be read for Allermatch class with appropriate 
data representation. 
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setClass("Bcepred", representation(ginumber = 
"numeric",organism= "character", property= "character", 
sequence= "character", length= 
"numeric"));setClass("ABCpred", representation(ginumber 
= "numeric" , organism="character", rank="numeric" , 
sequence="character", position="numeric", 
score="numeric")) 

readdata.bcepred<- function(xz){xa<- 
readLines(con = xz); tempy<- NULL;for (i 
in seq ( along = xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- 
c(tempy, new("Bcepred", ginumber = 
as.numeric(tempx[1]), organism = 
tempx[2], property = tempx[3], sequence = 
tempx[4], length = 
as.numeric(tempx[5])))}; return(tempy)} 
readdata.abcpred<- function(xz){xa<- 
readLines(con = xz); tempy<- NULL;for 
(i in seq ( along = xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- 
c(tempy, new("ABCpred", ginumber = 
as.numeric(tempx[1]), organism = 
tempx[2], rank = as.numeric(tempx[3]), 
sequence = tempx[4], position = 
as.numeric(tempx[5]), score= 
as.numeric(tempx[6])))};return(tempy)} 

 

Fig. 3. General representation of S4 Class for B Cell epitope data along with R scripts. 

 
 
 
 
 

setClass("Propred", representation(ginumber = 
"numeric",organism= "character", Allele= 
"character", Rank= "numeric", Sequence= 
"character", Position= "numeric", Score= "numeric"))

readdata.propred <-function(xz){xa<- 
readLines(con = xz); tempy<- NULL;for (i in 
seq ( along = xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- c(tempy, 
new("Propred", ginumber = 
as.numeric(tempx[1]), organism = 
tempx[2],Allele= tempx[3], Rank= 
as.numeric(tempx[4]), Sequence= tempx[5], 
Position= as.numeric(tempx[6]), Score= 
as.numeric(tempx[7])))};return(tempy)} 

 

 

Fig. 4. General representation of S4 Class for T Cell epitope data. 
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Fig. 5. Decision tree to identify non-allergen proteins fulfilling all first layer conditions. The 
R scripts are shown in the following two boxes. 

 

 

S4 Methods 
setGeneric("getfl_filtered",function(object) 
standardGeneric("getfl_filtered"));setMethod("getfl_filtered","FirstLayer",function(obj
ect){if ((object@tmhelices < 2) && (object@Hrefhits== "No Hits found") && 
((object@subcelllocal == "Extracellular") || (object@subcelllocal == 
"OuterMembrane"))) {return (object@ginumber)}else{return(FALSE)}}) 
setGeneric("nonallergen_algpred",function(object) 
standardGeneric("nonallergen_algpred"));setMethod("nonallergen_algpred","Algpre
d",function(object){if  
( object@ovpr == "Non Allergen") {return (object@ginumber)}else{return(FALSE)}}) 
setGeneric("nonallergen_allermatch",function(object) 
standardGeneric("nonallergen_allermatch"));setMethod("nonallergen_allermatch","Al
lermatch",function(object){if  
( object@prediction == "Non Allergen") {return 
(object@ginumber)}else{return(FALSE)}}) 
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Fig. 6. Decision tree to identify high scoring B cell and T cell epitopes. The R scripts follow in 
the next two boxes. 

R Scripts 
res1<- sapply(ecalgpred,nonallergen_algpred); res2<- 
sapply(ecallermatch,nonallergen_allermatch) 
resA<- union(res1,res2); resB <- sapply(ecflnew,getfl_filtered); resC<- 
intersect(resA,resB) 
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S4 Methods 
setGeneric("getgibce", function(object) 
standardGeneric("getgibce"));setMethod("getgibce","Bcepred",function(object){
object@ginumber}) 
setGeneric("getgi_abcepitopes", function(object,x) 
standardGeneric("get_abc_epi_gi"));setMethod("get_abc_epi_gi","ABCpred",fu
nction(object,x){if ( object@score >= x) {return 
(object@ginumber)}else{return(FALSE)}}) 
setGeneric("getgipropred", function(object) 
standardGeneric("getgipropred"));setMethod("getgipropred","Propred",functio
n(object){object@ginumber}) 
setGeneric("getgi_bimasepitopes",function(object,x) 
standardGeneric("getgi_bimasepitopes"));setMethod("getgi_bimasepitopes","Bi
mas",function(object,x){if ( object@Score >= x) {return 
(object@ginumber)}else{return(FALSE)}}) 
setGeneric("getgi_NetMHCNNepitopes",function(object) 
standardGeneric("getgi_NetMHCNNepitopes"));setMethod("getgi_NetMHCN
Nepitopes","NetMHCneuralnet",function(object){if (object@Bind_level == "SB") 
{return (object@ginumber)}else{return(FALSE)}}) 
setGeneric("getgi_NetMHCwtepitopes",function(object) 
standardGeneric("getgi_NetMHCwtepitopes 
"));setMethod("getgi_NetMHCwtepitopes 
","NetMHCwtmatrix",function(object){if (object@Bind_level == "SB") {return 
(object@ginumber)}else{return(FALSE)}}) 
setGeneric("getgi_iedbmhciepitopes", function(object,x) 
standardGeneric("getgi_iedbmhciepitopes 
"));setMethod("getgi_iedbmhciepitopes ","IEDB_mhci",function(object,x){if ( 
object@IC50 < x) {return (object@ginumber)}else{return(FALSE)}}) 
setGeneric("get_iedb_mhciiepi_gi", function(object,x) 
standardGeneric("get_iedb_mhciiepi_gi"));setMethod("get_iedb_mhciiepi_gi","I
EDB_mhcii",function(object,x){if ( object@IC50 < x) {return 
(object@ginumber)}else{return(FALSE)}}) 
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6.2 Systems biology data 
Systems biology deals with a system-level understanding of biological systems.  A system 
can be defined by a set of interacting entities, which are linked to each other by direct and 
indirect interactions. A biological system is a very complex network, which cannot be 
described by reductionist’s approach because it gives us a limited knowledge of a particular 
gene or protein that is insufficient to understand the complex behavior of a biological 
network. There is a need to integrate all the knowledge and comprehend new networks, 
which provide the overall picture of a system. These inferred networks can be used for 
further computational analysis and if found promising, can be validated through 
experiments. System level understanding requires the integration of experimental and 
computational biology. Modeling is the best method to represent a pathway and is the 
easiest way to understand a complex network. A network is modeled as a graph, which is 
the formal mathematical representation of the network and consists of nodes and edges. The 
network can be shown diagrammatically by using classical graph theory. All type of pathways 
(e.g. Gene regulatory network, signal transduction and metabolic pathways) can be modeled 
using various modeling techniques. A modeler uses two types of approaches- Data driven 
pathway modeling and Knowledge based pathway modeling, depending on the 
presence/absence of sufficient literature (Viswanathan et al., 2008).  If the knowledge is 
limited, data driven pathway modeling becomes the best choice. These modeling techniques 
are also known as qualitative (Data driven) and quantitative (Knowledge driven) modeling 
approaches.  Data driven pathway modeling requires the DNA microarray data set. For 
example, the Gene Regulatory network (GRN) can be inferred by using logical networks like 
Boolean networks, probabilistic Boolean network and dynamic Bayesian networks (Li et al., 
2007). 

R Scripts 
resabc<- sapply(eclabc,getgi_abcepitopes,0.9); nrresABC<- union(resabc,resabc); 
resbce<- sapply(eclbce,getgibce); nrresBCE <- union(resbce,resbce); resfl1<- 
intersect(nrresABC,nrresBCE); resbimas <- 
sapply(ecbimas,getgi_bimasepitopes,100); nrresBIMAS <- 
union(resbimas,resbimas); resiedb<- 
sapply(ec_iedb_mhci,getgi_iedbmhciepitopes,50); resiedbmhc1 <- 
sapply(ec_iedb_mhcii, getgi_iedbmhciiepitopes, 50); nrresIEDBMHC2 <- 
union(resiedbmhc1,resiedbmhc1); resnetmhcnn<- 
sapply(ecNetMHCneuralnet,getgi_NetMHCNNepitopes); nrresNETMHCNN <- 
union(resnetmhcnn,resnetmhcnn); resnetmhcwtmat <- 
sapply(ecNetMHCwtmatrix,getgi_NetMHCwtepitopes); nrresNETMHCWTMAT 
<- union(resnetmhcwtmat,resnetmhcwtmat); respropred<- 
sapply(ecpropred,getgipropred); nrresPROPRED<- 
union(respropred,respropred); nr1<- intersect(nrresBIMAS,nrresIEDB); nr2<- 
intersect(nr1,nrresIEDBMHC2); nr3<- intersect(nr2,nrresNETMHCNN); nr4<- 
intersect(nr3,nrresNETMHCWTMAT); nr5<- intersect(nr4,nrresPROPRED); 
selectedgis<- intersect(resfl1,nr5) 
finalgis<- intersect(selectedgis,resC) 
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A quantitative model describes a system with a set of mathematical equations.  Recently, 
many software tools have been developed for quantitative modeling of biological systems. 
We know that all physiochemical reactions follow a physical or chemical principle. For 
example a given enzyme catalysis reaction may follow the Michaelis Menten kinetics 
(Nelson et al, 2000). Thus, every reaction in kinetic model is represented in kinetic equation, 
which is then solved by the ordinary differential equation. In other words, a model is 
represented as a system of ODEs (Ordinary Differential Equations) for each of the reactions 
involved in the pathway (Tyson et al., 2001). If kinetic parameters are available, ODE based 
modeling becomes the best tool to understand dynamics of network. 
There are variety of bioinformatics tools available for modeling systems in many platforms. 
(Table 1 and Table 2) 
 
Task Tools Web address 

Model construction  
 

CellDesigner 
Jarnac 
Jdesigner 
Gepasi 

http://www.celldesigner.org/ 
http://sys-bio.org/ 
http://sys-bio.org/ 
http://www.gepasi.org/ 

Simulation 
 

CellDesigner  
COPASI 
Gepasi 
SBaddon (MatLab tool) 

http://www.celldesigner.org/ 
http://www.copasi.org/ 
http://www.gepasi.org/ 
http://www.mathworks.com/ 

Model Analysis MatLab, 
R- environment 

http://www.mathworks.com/ 
http://www.r-project.org/ 

Table 1. Bioinformatics tools for systems modeling in different platforms. 

 
Package Name Application 

BoolNet Generation, reconstruction, simulation and analysis of synchronous,
asynchronous, and probabilistic Boolean networks 

odesolve Solver for ordinary differential equations 

lpSolve Interface to solve linear/integer programs 

nlme Linear and non-linear mixed effect model 

SBML-R SBML are R interface analysis tool 

Table 2. Tools for systems modeling in R platform 

6.2.1 Examining the expression pattern of genes in clinical strains, an example 
This process is initiated by first collecting the microarray data from public repository. Next 

data normalization needs to be done. Log (base=10) transformed data can be used to 

normalize by using classical Z-score transformation method (Cheadle et al., 2003). Z-score 

reflects the relative expression condition of the genes. On the basis of z-score values we can 

categorize genes in many categories like highly expressed, moderately expressed and genes 

with low expression. We can also filter those genes having the z-score values higher than 

given cutoff in all samples or strains. The consistency of expression across the different 

samples or strains can be explained using Heatmap. R scripts may be used to obtain genes 

having z-score above 1 which would provide genes which are highly expressed. Heatmap 
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can be generated by using the R scripts. These heatmaps are false color image and very 

helpfull for visual comparison of different datasets. Dendrogram can be added on rows and 

columns by defining the heatmap arguments. The function Heatmap is provided by 

Bioconductor (Gentleman et al, 2004). 

 

 

 

 

 

 
 
 
 
 
 
 

Fig. 7. Heat map of all probesets with z-score greater than 1.0 in all 12 samples. Red – Lower 
limit, Yellow - Upper limit gene expression Zscores. The sample ids are labelled below. 

www.intechopen.com



 
Biological Data Modelling and Scripting in R 

 

273 

 

Fig. 8. Decision tree to identify highly expressed genes in clinical strains. 

 

setClass("ZscoreEcoli",representation(pro
be_id = "character", expressionmat = 
"matrix")) 

readdata.ZscoreEcoliExp<- function(xz){xa<- 

readLines(con = xz); tempy<- NULL;for (i in seq ( along 

= xa)){tempx<- unlist(strsplit(xa[i],"\t"));tempy<- 

c(tempy, new("ZscoreEcoli", probe_id = tempx[1], 

expressionmat = 

matrix(c(as.numeric(tempx[2]),as.numeric(tempx[3]),as.

numeric(tempx[4]),as.numeric(tempx[5]),as.numeric(te

mpx[6]),as.numeric(tempx[7]),as.numeric(tempx[8]),as.

numeric(tempx[9]),as.numeric(tempx[10]),as.numeric(t

empx[11]),as.numeric(tempx[12]),as.numeric(tempx[13]

)), nrow=1,ncol=12) )) }; return(tempy)} 

[11]),as.numeric(tempx[12]),as.numeric(tempx[13])), 

nrow=1,ncol=12) )) }; return(tempy)} 

Fig. 9. Representation of S4 Class “ZscoreEcoli”. 
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6.2.2 Identifications of the attractors in a simple Boolean network using BoolNet 
package 
Biological entities can have 2 possible logical states ON or OFF i.e. transcription of gene 
being either ON or OFF, protein is either Present or Absent etc. A system is more intuitively 
understandable by logical assumptions.  Mainly Boolean logical network is used for the 
gene regulatory networks. Here we have implemented it on a more simple metabolic 
reactions network. Here we have chosen 3 reactions of genes involved in metabolic 
pathways of Mycobacterium tuberculosis, which are consistently highly expressed in 12 
different strains (Gao et al., 2005). This Boolean network consists of 8 genes. Simple rules are 
written for reaction by using AND and OR Boolean operators. Attractors are the points in a 
network towards which the system is evolved. Attractors can be steady states or cycles. 
These are the states where system resides most of the time (Müssel et al., 2010). 
########### 
Boolean network with 8 genes 
Involved genes: 
nad coa oaa pyr sdhlam accoa succoa cit 
Transition functions: 
nad = nad 
coa = coa 
oaa = oaa 
pyr = pyr 
sdhlam = sdhlam 
accoa = (coa & nad & pyr) | (cit & coa) 

S4 Methods 
setGeneric("getmatrix", function(object,x) 
standardGeneric("getmatrix"));setMethod("getmatrix","ZscoreEcoli",function(object,x
){tempmat<- object@expressionmat; tempnew<- NULL; if ( ( tempmat[1,1] > x) && 
(tempmat[1,2] > x) && (tempmat[1,3] > x) && (tempmat[1,4] > x) && (tempmat[1,5] 
> x)&& (tempmat[1,6] > x)&& (tempmat[1,7] > x)&& (tempmat[1,8] > x)&& 
(tempmat[1,9] > x)&& (tempmat[1,10] > x)&& (tempmat[1,11] > x)&& 
(tempmat[1,12] > x)) {tempnew <- new("ZscoreEcoli", probe_id = object@probe_id, 
expressionmat = tempmat);return(tempnew)} else return(0)}) 

R Scripts 
eczscore<- readdata.ZscoreEcoliExp("zscoreEcoli") 
EcoliMat <- sapply(eczscore,getmatrix,1); EcoliMatFinal <- setdiff(EcoliMat,0) 
mymat <- NULL; for (j in seq(along = EcoliMatFinal)){tempomat<- 
EcoliMatFinal[[j]]@expressionmat; rownames(tempomat) <- 
EcoliMatFinal[[j]]@probe_id; mymat<- rbind(mymat,tempomat)} 
heatmap(mymat) 
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succoa = (coa & sdhlam) 
cit = (accoa & oaa) 
########## 
Abbreviations 
NAD = NAD, COA = Coenzyme-A, OAA = oxaloacetate, PYR = pyruvate, SDHLAM= S-
adenosyl-L-methionine, ACCOA= acetyl-CoA, CIT = citrate, SUCCOA = succinyl-coA 
Description of network: - 
1. AcetylCoA   is formed by 2 reactions: Coenzyme A and NAD and Pyruvate OR Citrate 

and Coenzyme A 
2. SuccinylCoA is formed by Coenzyme A and S-adenosyl-L-methionine 
3. Citrate is formed by Acetyl-CoA and Oxaloacetate 
4. Species considered as constant (whose rules are not defined) e.g. NAD, OAA, PYR,  

SDHLAM and COA 
 
 

 
 

Fig. 10. Dependency among species in the example network of 8 genes 
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Fig. 11. Plot of different attractors in the network. Node is representing state and line 
representing state transition.  Colour in plot is corresponding to different basin of attraction. 
We obtained total of 44 attractors for the network of which 39 have single state and 5 
attractors have 2 states.  

 

 

Fig. 12. Plot of Attractors with 2 states (from subsets 39 to 44). Red colour given for inactive 
genes and green colour is given for active genes. Each attractor given in plot is contributing 
1.56% in the network.  
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Even though this is simple reaction network, yet it is giving the view about the states where 
system can reside most of the time i.e. attractors in the network.  We can study the knockout 
and over expression in a complex network. Robustness study of the network is also possible 
by studying network behavior through knocking out genes.  

6.3 Chemoinformatics data 
The Chemoinformatics branch is the interface between Computer applications and 
Chemistry and deals with problems of the field of the chemistry.  Chemoinformatics 
concentrates on molecular modelling, chemical structure coding and searching, data 
visualization etc.  
Molecular modelling involves the use of theoretical methods and computational techniques 
to model or mimic the behavior of molecules. It helps reduce the complexity of the system, 
allowing many more particles (atoms) to be considered during simulations. Data 
visualization is the study of the visual representation of data by graphical means.  
Chemoinformatics is useful specially to solve drug discovery related problems. Drug-like or 
Lead identifications are done through various in-silico methods in chemoinformatics. Drug-
like compounds refer to the compounds, which follow the lipinski’s rule and have structural 
similarities with the known drugs and bind to the active site of the target but have not been 
tested in laboratory. There are also various databases available helping in this direction.  
 

Functions Tools Links 

Databases for 
searching Known 
Inhibitors 

Pubchem 
Pubmed 
Drug Bank 

http://pubchem.ncbi.nlm.nih.gov/search/search.
cgi 
http://www.ncbi.nlm.nih.gov/pubmed 
http://www.drugbank.ca/ 

Molecular 
Visualization  

Pymol 
Rasmol 
SwissPDBviewer 

http://www.pymol.org 
http://rasmol.org 
http://spdbv.vital-it.ch/ 

Structres drawn 
StructuresViewed 

Marvin Sketch 
Chemmine 

http://www.chemaxon.com/products/marvin/
marvinsketch 
http://bioweb.ucr.edu/ChemMineV2 

File Format 
Translator 

Smile Translator 
OpenBabel 

http://cactus.nci.nih.gov/translate/ 
http://openbabel.org/wiki/Main_Page 

Drug Designing AutoDock 
GOLD 

http://autodock.scripps.edu/ 
http://www.ccdc.cam.ac.uk/products/life_scienc
es/gold/ 

Toxicity prediction Toxtree http://toxtree.sourceforge.net/ 

Molecular dynamics 
simulation 

GROMACS http://www.gromacs.org/ 

Table 3.  Softwares used in Cheminformatics. 
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Package Name Principle Application

ChemmineR Uses Tanimoto 
coefficient as the 
similarity measure 

Atom-pair descriptors calculation with the help 
of functions included within it, 2D structural 
similarity searching, clustering of compound 
libraries, visualization of clustering results and 
chemical structures. 

Rcdk Allow an user to access 
functions of CDK (JAVA 
library for 
Chemiinformatics) on R 
platform 

Reading molecular file formats, performing ring 
perception, aromaticity detection to fingerprint 
generation and determining molecular 
descriptors of various properties of Drug-Like 
compounds 

Rpubcem Uses various functions 
for data retrieval 

Helps access the datas and assays of 
compounds from pubchem 

ic50 Helps determine the 
efficiency of a newly 
found drug like molecule

Calculates IC50 

Bio3D Analysis of protein 
structure and sequence 
data 

Protein structure analysis, comparative analysis 
with different proteins, aligns protein 
sequences. 

Table 4. Tools useful in Chemoinformatics in R 

6.3.1 Identification of drug-like compounds 
In this era, with the rise in number of infectious life threatening diseases due to clever 
change at sequence level of the pathogenic organism, discovery of new potential drugs 
holds immense importance. In this direction various in-silico chemoinformatics tools 
mentioned in Table 3 are helpful. In the problem regarding identification of Drug-like 
compounds the initial step would include literature search for known inhibitors of the 
disease target. Similarly a database of publicly available drug like molecules is obtained 
from various databases like ZINC (Irwin et al., 2005), NCI (Voigt et al., 2001) database etc. 
Thereafter Marvin sketch (MarvinSketch 5.3.8, 2010) may be used to draw the known 
inhibitors and their analogs, which need to be saved in file formats: Structure Data Format 
(SDF) and Simplified Molecular Input Line Entry Specification (SMILES). Using 
ChemmineR package (Cao et al, 2008) on R platform similarity search of Known inhibitor 
with the database of publicly available drug-like molecules is done using Tanimoto 
Coefficient where a desirable cutoff score e.g. 0.6 may be used as cutoff score to obtain a list 
of similar lead compounds. This list corresponds to a number of compounds similar to the 
known inhibitors. The properties of these similar compounds are calculated with another 
package of R called rcdk (Guha et al, 2007). The Lipinski’s rule of five can be applied to 
further shortlist. The solubility of these compounds can be analysed by pHSol 1.0 Server 
(Hansen et al, 2006). For analyzing protein-ligand binding, docking is done using AutoDock 
software (Goodsell et al, 1996). If the ligand binds to the active site, only then it may have 
pontential to interfere with protein function thereby eligible for further testing. Thereafter to 
test its potential further, energy minimization and simulation are done with various 
softwares eg. GROMACS (Hess et al., 2008). The ligand fulfilling all the desirable drug like 
quality and showing good stability over a reasonable time period of simulations (5-10 
nanoseconds) may be selected as a candidate for testing. This process is represented as 
decision tree (Figure 13). 
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Fig. 13. Decision tree to identify Drug like compounds. 

 

setClass(Class="MolDescriptors",representation=representation
(Mol_id="numeric",TPSA="numeric",nHBAcc="numeric",nHB
Don="numeric",nRotB="numeric",LipinskiFailures="numeric",
MW="numeric",XLogP="numeric",SMILE="character")) 

readdata.MolDescriptors= 
function(filename){x=readLines(
con=filename);temp=NULL;obj=
NULL;for(i in 
2:length(x)){temp=unlist(strsplit(
x[i],"\t"));print 
(temp);obj=c(obj,new("MolDescri
ptors",Mol_id=as.numeric(temp[
1]),TPSA=as.numeric(temp[2]),n
HBAcc=as.numeric(temp[3]),nH
BDon=as.numeric(temp[4]),nRot
B=as.numeric(temp[5]),LipinskiF
ailures=as.numeric(temp[6]),MW
=as.numeric(temp[7]),XLogP=as.
numeric(temp[8]),SMILE=temp[
9]));}return(obj);} 

Fig. 14. Representation of S4 Class “MolDescriptors” with R scripts to accomplish the 
construction. 

www.intechopen.com



 
Systems and Computational Biology – Bioinformatics and Computational Modeling 

 

280 

 

 

6.4 Text mining 
During last few decades there has been enormous increase in the size of research data in the 

form of scientific articles, abstracts and books, online databases and many more. This text 

data may be structured or unstructured and need of hour is to mine for useful information 

from text data. 

Thus text mining has evolved widely as an interdisciplinary discipline using methods from 

computer sciences, linguistics and statistics. R provides intelligent ways in accessing and 

integrating the treasure of information hidden in the scientific journals, papers and other 

electronic media. It is most often used to perform statistical and data mining analyses and is 

best known for its ability to analyze structured data. Majority of people read only abstracts 

of papers so as to save time and avoid in going into details of irrelevant articles. The tm R-

package provides complete platform that efficiently processes various text documents to 

extract useful information (Feinerer et al, 2008). The database backend support also 

minimizes the memory demands to handle very large data sets in R. It accepts text data 

either from local database or directly from online database. 

6.4.1 An example of text mining PubMed abstracts  to get frequently appearing gene 
symbols and drug names 
We downloaded abstracts for PubMed query “Glioma” from PubMed. We formatted these 

abstracts in R so as to get a file containing PMIDs, Titles, Abstract Text and Journal Name in 

separate columns. We create the S4 class object of this Abstract file. Now if we have to 

search for any abstract containing a pattern or word of our interest we use regexpr function 

in R to get all those abstracts e.g. pathway. 

From these filtered Glioma pathway abstracts a Corpus (collection of large text) is generated 

using tm package function. This Corpus is subjected to Stemming, Stop word removal, 

common English word removal using R libraries rJava, RWeka (Hornik et al, 2009), 

RWekajars, slam, Snowball (Hornik, 2009), Corpora. We can set other controls as well. Now 

we can create term document matrix from this Corpus, containing all terms as rows and 

abstracts as columns. From this term document matrix we can extract the terms within 

different frequency ranges i.e., their number of occurrences in each abstract indicating 

their importance. Thus we can predict that terms which have higher frequency of 

occurrence in the matrix are more important and are related in some sense. We have filtered 

all the terms with frequency of their occurrence greater than 5.   

S4 method to get filtered molecular Descriptor Data 
setGeneric("FilterMols",function(obj,x)standardGeneric("FilterMols")); 
setMethod("FilterMols", 
"MolDescriptors",function(obj,x){if(obj@LipinskiFailures==x){return(obj);}else{return(
0);}}) 

Example R Scripts to get filtered molecular Descriptor Data 
result=sapply(mol,FilterMols,1); result_final=setdiff(result,"0") 
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These terms were ‘intersect’ with HUGO Gene Nomenclature Committee data set (HGNC) 
(Bruford et al, 2008) and drug names from DrugBank (Knox, et al 2011). We thus get the list 
of all the gene symbols, gene names, gene aliases  and drug names in the said frequency 
range from term document matrix. We now determine the total count of their occurrence in 
matrix so as to rank these extracted genes and drugs. We can make clusters from these data 
and can find gene-drug, gene-gene, and drug-gene interactions in different ranges of 
correlation. The decision tree is shown in Figure 15. The dataclasses with their 
representations is described in Figure 16. 
 

 

Fig. 15. Decision tree to identify Glioma that include pathway in the text. 
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setClass("TextMining", representation(PMID = "numeric", 

Title ="character",Abstract = "character", Journal_Name = 

"character")) 

readdata.textmining<- 
function(xz){xa<- readLines(con = 
xz);tempy<- NULL;for (i in seq ( along 
= xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- 
c(tempy, new("TextMining", PMID = 
as.numeric(tempx[1]), Title = temp[2], 
Abstract = tempx[3], Journal_Name = 
tempx[4]))};return(tempy)} 

 
 
 
 

Fig. 16. Representation of S4 Class “TextMining” with R scripts to accomplish the 
construction. 

 
 
 
 
 

 
 
 
 

6.5 Getting data from Pfam and PRINTS for a specified domain or pattern name. 
Pfam data for a specified domain name or PRINTS data for specified pattern name may be 

extracted using S4 scripts. The process is summarized below in form of decision tree (Figure 

17). The dataclasses with their representations is described in Figure 18 and Figure 19. 

S4 Methods 

setGeneric("getAbstract", function(object) standardGeneric("getAbstract")); 

setMethod("getAbstract","TextMining",function(object){if 

(regexpr(pattern="pathway",object@Abstract,fixed=TRUE)!=-1){return 

(object@Abstract)}}); 
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Fig. 17. Decision tree to identify data from Pfam and PRINTS for a specified domain or 
pattern name. 

R Scripts 
filtered<- sapply(textfile,getAbstract) 
doc1 <- filtered[!sapply(filtered,is.null)] 
library(tm);library(rJava);library(RWekajars);library(RWeka);library(slam);library(
Snowball);library(corpora); 
doc2<-Corpus(VectorSource(doc1)) 
setcontrol<-list(minDocFreq = 6, removeNumbers = FALSE, stemming = TRUE, 
stopwords = TRUE) 
TDM<-TermDocumentMatrix(doc2,control=setcontrol) 
Terms<-inspect(TDM[1:17,1]) 
Terms1<-as.data.frame(Terms) 
write.table(Terms1,file="Terms1.txt",sep="\t") 
write.table(Terms1,file="Terms1.txt",col.names=FALSE,sep="\t") 
Terms2<-read.table("Terms1.txt",header=FALSE,sep="\t") 
FilteredTerms<-as.character(Terms2[1:17,1]) 
load("HGNC_GENE_IDS.RData") 
load("DrugNamesDrugBank.RData") 
AllGeneSymbols<-c(as.character(HGNC_GENE_IDS[1:19363,2])); AllGeneNames<-
c(as.character(HGNC_GENE_IDS[1:19363,3])); AllGeneAliases<-
c(as.character(HGNC_GENE_IDS[1:19363,6])); AllDrugNames<-
c(as.character(DrugNamesDrugBank[1:6824,1])) 
getGeneSymbols<-intersect(AllGeneSymbols,FilteredTerms); getGeneNames<-
intersect(AllGeneNames,FilteredTerms); getGeneAliases<-
intersect(AllGeneAliases,FilteredTerms); getDrugNames<-
intersect(AllDrugNames,FilteredTerms) 
z1<- charmatch(getGeneSymbols,FilteredTerms) 
for(i in 1:4){b<-NULL;b<-z1[i];sumFreqOccurence<-NULL;sumFreqOccurence<-
sum(inspect(TDM[b,1:22]));write(sumFreqOccurence,file="SumFreqOccurence.txt",
append=TRUE,sep=",")} 
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setClass("Prints",representation(ginumber = 
"numeric",organism 
="character",FingerPrint="character",E_value= 
"numeric")) 

readdata.prints<- function(xz){xa<- 
readLines(con = xz); tempy<- NULL;for (i 
in seq ( along = xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- c(tempy, 
new("Prints", ginumber = 
as.numeric(tempx[1]), organism = 
tempx[2],FingerPrint=tempx[3], E_value= 
as.numeric(tempx[4])))};return(tempy)} 

 

Fig. 18. Representation of S4 Class “Prints” with R scripts to accomplish the  construction. 

 

setClass("Pfam",representation(ginumber = 
"numeric",organism ="character",alignment_start = 
"numeric",alignment_end = "numeric",envelope_start= 
"numeric",envelope_end= 
"numeric",hmm_acc="character",hmm_name="character",
type="character",hmm_start= "numeric",hmm_end= 
"numeric",hmm_length= "numeric",bit_score= 
"numeric",E_value= "numeric",significance= 
"numeric",clan="character")) 

readdata.pfam<- function(xz){xa<- 
readLines(con = xz); tempy<- 
NULL;for (i in seq ( along = 
xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- 
c(tempy, new("Pfam", ginumber = 
as.numeric(tempx[1]), organism = 
tempx[2],alignment_start= 
as.numeric(tempx[3]),alignment_end= 
as.numeric(tempx[4]),envelope_start= 
as.numeric(tempx[5]), envelope_end= 
as.numeric(tempx[6]),hmm_acc= 
tempx[7],hmm_name= tempx[8],type= 
tempx[9],hmm_start= 
as.numeric(tempx[10]),hmm_end= 
as.numeric(tempx[11]),hmm_length= 
as.numeric(tempx[12]),bit_score= 
as.numeric(tempx[13]),E_value= 
as.numeric(tempx[14]), significance= 
as.numeric(tempx[15]),clan= 
tempx[16]))};return(tempy)} 

 

Fig. 19. Representation of S4 Class “Pfam”along with R scripts to accomplish the 
construction. 
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7. Parallel computing 

When the data size is large (example in millions) and fast information calculation and 

retrieval is needed, a single modern computational processor fails to fulfill the purpose. In 

that case, a number of processors are needed to work simultaneously, each carrying out 
same set of operations on different data objects. This type of approach is called Parallelization 

on data level; the processing time for a single object is not being reduced but a number of data 

objects are being processed during the same time-interval by separate processors. 
The Rmpi package (Yu, 2010) is helpful in this direction. We used ChemmineR (Cao et al 
2008) using Rmpi, an interface to MPI (Message Passing Interface). In MPI, processes 
communicate with each other by sending and receiving messages. We made a library of 
small molecules of size around 26 millions in SDF file format from various publicly and 
commercially available sources; these molecules were distributed over 1792 files. We have 
used ChemmineR's cmp.parse() function to get corresponding atom-pair descriptors and 
these were stored in .rda files. These .rda files constitute our database. Our aim was to find 
molecules similar to a given query molecule. 
On a typical workstation of 1GB RAM and Intel(R) Pentium(R) 4 CPU 3.40GHz, it takes 
about 5 hrs to complete a similarity search. In order to increase the speed we have used 
Rmpi (version: 0.5-8) along with Open MPI (version 1.3.2) – A High Performance Message 
Passing Library and implemented the Data Level Parallelization on ROCKS (release 4.3) 
cluster- an open-source Linux cluster distribution with eight nodes having Intel(R) 
Xeon(TM) CPU 3.60GHz processors. The result was a significant increase in performance 
and the job was done within 30 minutes. This approach has been shown in Figure 20 as a 
flowchart. 

S4 Methods 
setGeneric("get_prints",function(object,x) 
standardGeneric("get_prints"));setMethod("get_prints","Prints",function(object,x){if 
( object@FingerPrint == x) {tempo<- 
paste(object@ginumber,object@organism,object@FingerPrint,object@E_value, sep=" 
"); return (tempo)}else {return(0)} }) 
setGeneric("get_pfam",function(object,x) 
standardGeneric("get_pfam"));setMethod("get_pfam","Pfam",function(object,x){if ( 
object@hmm_name == x) {tempo<- paste(object@ginumber,object@organism, 
object@alignment_start, object@alignment_end, object@envelope_start, 
object@envelope_end, object@hmm_acc, object@hmm_name, object@type, 
object@hmm_start, object@hmm_end, object@hmm_length, object@bit_score, 
object@E_value, object@significance, object@clan, sep=" "); return (tempo)}else 
{return(0)} }) 

R Scripts 
result1<- sapply(eclprints,get_prints,"HOMSERKINASE");result1<- setdiff(result1,"0") 
result1<- sapply(eclpfam,get_pfam,"DnaJ");result1<- setdiff(result1,"0") 
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Fig. 20. Figure describing the parallel computing process, parallelization on data level. 

8. Building your own package 

The various R objects and S4 methods can be encapsulated into .RData named according to 
the selected problem. All these packages can be sourced from the link 
http://sourceforge.net/projects/sysbior/. 

9. Conclusion 

Various packages to handle biological data of diverse type of problems have been 
developed with the help of S4 object oriented programming. The S4 objects can be handled 
with ease applying S4 methods to fetch useful data. The process described here may also be 
modified with novel thought process to create S4 methods to fetch useful analysis data 
accomplishing other conditions.  
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