
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322398916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

13

Biological Data Modelling and Scripting in R

 Srinivasan Ramachandran et al.*
G.N. Ramachandran Knowledge Centre for Genome Informatics,

Institute of Genomics and Integrative Biology, Delhi,
India

1. Introduction

In this age of Systems and Integrative Biology, development of high throughput genome
sequencing techniques and other large-scale experimental methods, are generating large
amount of biological data. Bioinformatics enables us to generate added value to these
datasets in the form of annotation, classification and pattern extraction. These developments
demand adequate storage and organization for further analysis.
In order to unravel the trends and patterns present in such diverse data sets, computational
platforms with capability for carrying out integrative analysis are required for rapid
analysis. R language platform is an example of one such platform allowing integrated rapid
analysis process. The R is a High-level interpreted language suitable for developing new
computational methods (R Development Core Team. 2010). Computational Biologists use R
extensively because of the availability of numerous functions and packages including the
well-known Bioconductor package (Gentleman et al., 2004). The rich inbuilt functions and
the facility to write functions as well as object oriented programming facilities enable
development of new packages for rapid analysis.

2. R platform

R is a programming language integrated with an R environment, facilitating easy and rapid
data analysis with the help of its integrated suite of software facilities. Several
computational biology packages have been developed in R language. Developing
computational packages in R provides advantage as to carry out the analysis locally and
also build further tools and scripts. Thus both new applications and extension of existing
applications can be achieved. R helps accomplishment of complex tasks using simple scripts
with the help of inbuilt suit of operators aiding in calculations. Also R environment provides
graphical facilities for data analysis and display. Another major advantage of preparing
datasets and computational biology tools in R is that a large set of statistical and
mathematical tools can be applied on the datasets for analysis. R being an open source
controlled by GNU General Public License allows future developments and customizations

*Rupanjali Chaudhuri, Srikant Prasad Verma, Ab Rauf Shah, Chaitali Paul, Shreya Chakraborty,
Bhanwar Lal Puniya and Rahul Shubhra Mandal
G.N. Ramachandran Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology,
Delhi, India

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

262

more widely. R is maintained by a core group of experts, thus ensuring its availability for
long life. R in its repository also has a number of packages useful in various fields of
biology. These packages help solve biological problems in well-structured manner saving
time and money.

3. Data modeling for R

Data modeling for R involves identification of the datasets required for the corresponding
problem undertaken. The data in the datasets needs to be structured into relevant rows and
columns. For each field or column only one data type is allowed either character or numeric
data type. Thereafter standardization or pre-processing of the data in datasets needs to be
done. This involves checking the data for any inconsistencies- e.g., removal of blank cells by
replacing with “Not known” or “None”, checking header names for unwanted symbols like
?@$%*^ #/, checking columns for single data-type etc. The datasets may be then made into
R object. Thus data modeling for R plays an important role to make data easily and properly
read and operated with scripts in R platform. The data type in each column must conform to
same format for all cells in that column.

4. S4 object oriented programming

S4 is the 4th version of S. The major development of S4 over S3 is the integration of functions,
which allows considering S as an object oriented language. The object system in S4 provides
a rich way of defining classes, handling inheritance, setting generic methods, validity
checking and multiple dispatches. This allows development of easy to operate packages for
rapid data handling and organized structured framework.

4.1 Setting class and reading data into S4 objects
Classes with specific representations are created in S4. Thereafter new object belonging to
the set class may be created. Generic functions may also be made using object of the class:
1. setClass() is used to set the class of a data
2. new()is used to create objects of the class set
3. setGeneric() helps define generics
4. setMethods() is used to set methods

5. Decision tree

A decision tree (Maimon et al., 2005) is a tree like graph that a decision maker can create to
help select the best amongst several alternative courses of action. Biological problems can be
solved with help of well-structured and optimized algorithms. These algorithms can be
represented in the form of decision trees to get better and clear understanding of the
algorithm process followed to solve the biological problem.

6. Bioinformatics tools to retrieve biological data

Bioinformatics in its repository has a large number of tools developed to address diverse
biological questions. These include investigating relationship between protein structure and
function, immune response, development of potential vaccine candidates, modeling
pathways, discovery of drug targets and drugs.

www.intechopen.com

Biological Data Modelling and Scripting in R

263

6.1 Immunoinformatics data
The immunoinformatics branch of bioinformatics deals with applying bioinformatics
principles and tools to the molecular activities of the immune system. Immunoinformatics
provides databases and predictive tools, useful to fetch data on cells of immune system. This
data is termed immunological data and can be broadly split into epitope data and allergen
data. This data is useful for aiding in vaccine discovery, referred to as computer aided vaccine
design. An important aim here is antigen identification or identification of epitopes capable of
eliciting immune response. There are various immunoinformatics databases available for
aiding this process (Chaudhuri et al., 2008; Chaudhuri et al., 2011; Vivona et al., 2008).
An epitope, also known, as ‘antigenic determinant’ is a surface localized part of antigen
capable of eliciting an immune response. A B-cell epitope is region of the antigen recognized
by soluble or membrane bound antibodies. B-cell epitopes are further classified as either
linear or discontinuous epitopes. Linear epitope is a single continuous stretch of amino acids
within a protein sequence, whereas epitopes whose residues are distantly placed in the
sequence but are brought together by physico-chemical folding are termed as discontinuous
epitopes.
T cell epitope is a short region presented on the surface of an antigen-presenting cell, where
they are bound to MHC molecules. These epitopes can be characterized into two types
based on their recognition by either MHC Class I molecule or Class II molecule.
Epitope prediction tools form the backbone of immunoinformatics. The main aim of these
tools is to aid in reliable epitope identification. Various sophisticated T cell epitope
prediction tools have been developed which help successful epitope prediction. Some of
these algorithms are based on artificial neural networks and weight matrices such as
NetMHC (Lundegaard et al., 2008), predictive IC(50) values IEDB-ARB method (Bui et al.,
2005; Zhang et al., 2008), predicted half-time of dissociation Bimas (Parker et al., 1994),
quantitative matrices ProPred (Singh et al., 2001). Reliable and accurate B-cell epitope
prediction is still in development although we have some tools such as ABCpred (Saha et
al., 2006) and BcePred (Saha et al., 2007). These tools help build the epitope data from
protein sequences.
Allergen identification holds major importance in vaccine discovery problem, as it is
desirable that a candidate vaccine is non-allergic. Allergens are substances (proteins,
carbohydrates, particles, pollengrains etc.) to which the body mounts a hypersensitive
immune response typically of Type I.
Various tools of immunoinformatics have been developed with aim to predict allergenic
proteins. AlgPred (Saha et al., 2006) allows prediction of allergens through either singly or
in combination of support vector machine, motif-based method, and searching the database
of known IgE epitopes. Allermatch (Fiers et al., 2004) performs BLAST search against
allergen representative peptides using a sliding window approach. The data fetched
constitute allergen data. The building of Dataclasses with their representations is described
in Figures 1-4.

6.1.1 Identification of potential immunogens useful as vaccine candidates
Immunogen is a substance capable of eliciting an immune response. It possesses epitopes,
which binds to the B cells or T cells to elicit the response. To identify protein immunogens
useful as vaccine candidates, bioinformatics approach may be undertaken. There are various
B-cell and T-cell epitope prediction tools available as mentioned in the previous section.
These algorithms provide prediction of the epitopes present in the submitted protein
sequence. Each prediction comes with associated score representing the confidence of

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

264

prediction. A cutoff score can be set to select the high scoring epitopes and subsequently
proteins can be identified with high scoring epitopes. Thus the filtered orfids of proteins with
high scoring B-cell and T-cell epitopes can be selected. The individual results of orfids may be
analyzed by using the ‘intersect’ operator of R to get the final list of orfids representing the
proteins meeting conditions of multiple features. It is desirable for the candidate vaccine to be
non-allergic. Allergen data for the proteins may be fetched using allergen prediction
immunoinformatics tools to obtain list of non-allergic proteins. Thus list of non-allergen
proteins with high scoring B-cell and T-cell epitopes may be obtained. B-cell and T-cell data
have been captured as Secondlayer data. As an example from the Firstlayer data certain sub
problems to target a potential adhesin vaccine candidate can be stated as- the protein should
be an adhesin, the protein should not be intracellularly located, it should not have similarity to
human reference proteins, it should not have more than one transmembrane helix thereby
facilitating proper cloning and expression. The set of proteins fulfilling all the Firstlayer
conditions can be intersected with the set of non-allergen proteins. This whole process is
depicted as decision tree (Figure 5). Similarly the decision tree describing the steps for
obtaining proteins with high scoring B-cell and T-cell epitopes is shown in Figure 6.

setClass("FirstLayer", representation(ginumber = "numeric", annot =
"character", length = "numeric", spaanscore = "numeric", paralogs =
"character", omcl = "character", signalp = "numeric", is_signalp =
"character", psortbscore = "numeric", subcelllocal = "character",
tmhelices = "numeric", topotmhelix = "character", betawrap =
"character", Hrefhits = "character", cddhits = "character"))

readdata.firstlayer<-
function(xz){xa<-
readLines(con = xz);
tempy<- NULL;for (i in
seq (along =
xa)){tempx<-
unlist(strsplit(xa[i],"\t"))
;tempy<- c(tempy,
new("FirstLayer",
ginumber =
as.numeric(tempx[1]),
annot = tempx[2], length
= as.numeric(tempx[3]),
spaanscore =
as.numeric(tempx[4]),
paralogs = tempx[5],
omcl = tempx[6],
signalp =
as.numeric(tempx[7]),
is_signalp = tempx[8],
psortbscore =
as.numeric(tempx[9]),
subcelllocal =
tempx[10], tmhelices =
as.numeric(tempx[11]),
topotmhelix =
tempx[12], betawrap =
tempx[13], Hrefhits =
tempx[14], cddhits =
tempx[15])) };
return(tempy)}

Fig. 1. Representation of S4 Class “FirstLayer” and the R scripts to accomplish the
construction.

www.intechopen.com

Biological Data Modelling and Scripting in R

265

setClass("Algpred", representation(ginumber =
"numeric" , organism="character", ovpr=
"character",IGEPred="character",IgEepitope="cha
racter",Seqmatched="character",position="numer
ic",PID="numeric", MASTRESULT="character",
SVMPRED="character",SVMScore="numeric",SV
MThold="numeric"
,SVMPPV="character",SVMNPV="character",SV
MDipepPRED="character",
SVMDipepScore="numeric",SVMDipepThold="n
umeric",SVMDipepPPV="character",SVMDipep
NPV="character",BLASTPred="character",HitAR
Ps="character")); setClass("Allermatch",
representation(ginumber = "numeric" ,
organism="character", prediction
="character",hit_no= "numeric", db ="character",
allermatch_id ="character",best_nit_index
="numeric",no_hits_ident_gt35
="numeric",perc_hits_gt35 ="numeric",
perc_ident ="numeric", seq_len_fasta_aligned=
"numeric",external_link ="character", link_db
="character",genus_name ="character",
spc_name="character"))

readdata.algpred<- function(xz){xa<-
readLines(con = xz); tempy<- NULL;for (i in seq
(along = xa)){tempx<-
unlist(strsplit(xa[i],"\t"));tempy<- c(tempy,
new("Algpred", ginumber =
as.numeric(tempx[1]), organism = tempx[2],
ovpr= tempx[3] ,IGEPred=tempx[4]
,IgEepitope=tempx[5] ,Seqmatched=
tempx[6],position= as.numeric(tempx[7]) ,PID=
as.numeric(tempx[8]), MASTRESULT=tempx[9],
SVMPRED=tempx[10], SVMScore=
as.numeric(tempx[11]),SVMThold=
as.numeric(tempx[12]) ,SVMPPV=
tempx[13],SVMNPV=
tempx[14],SVMDipepPRED= tempx[15],
SVMDipepScore=
as.numeric(tempx[16]),SVMDipepThold=
as.numeric(tempx[17]),SVMDipepPPV=
tempx[18],SVMDipepNPV=
tempx[19],BLASTPred= tempx[20],HitARPs=
tempx[21]))};return(tempy)}
readdata.allermatch<- function(xz){xa<-
readLines(con = xz); tempy<- NULL;for (i in seq
(along = xa)){tempx<-
unlist(strsplit(xa[i],"\t"));tempy<- c(tempy,
new("Allermatch",ginumber =
as.numeric(tempx[1]), organism = tempx[2],
prediction= tempx[3], hit_no =
as.numeric(tempx[4]),db= tempx[5],
allermatch_id= tempx[6], best_nit_index=
as.numeric(tempx[7]), no_hits_ident_gt35=
as.numeric(tempx[8]),perc_hits_gt35=
as.numeric(tempx[9]),perc_ident=
as.numeric(tempx[10]), seq_len_fasta_aligned=
as.numeric(tempx[11]), external_link=
tempx[12], link_db= tempx[13], genus_name=
tempx[14], spc_name=
tempx[15]))};return(tempy)}

Fig. 2. General representation of S4 Class for Allergen data. The script for reading the data in
is given for AlgPred. Similarly the data can be read for Allermatch class with appropriate
data representation.

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

266

setClass("Bcepred", representation(ginumber =
"numeric",organism= "character", property= "character",
sequence= "character", length=
"numeric"));setClass("ABCpred", representation(ginumber
= "numeric" , organism="character", rank="numeric" ,
sequence="character", position="numeric",
score="numeric"))

readdata.bcepred<- function(xz){xa<-
readLines(con = xz); tempy<- NULL;for (i
in seq (along = xa)){tempx<-
unlist(strsplit(xa[i],"\t"));tempy<-
c(tempy, new("Bcepred", ginumber =
as.numeric(tempx[1]), organism =
tempx[2], property = tempx[3], sequence =
tempx[4], length =
as.numeric(tempx[5])))}; return(tempy)}
readdata.abcpred<- function(xz){xa<-
readLines(con = xz); tempy<- NULL;for
(i in seq (along = xa)){tempx<-
unlist(strsplit(xa[i],"\t"));tempy<-
c(tempy, new("ABCpred", ginumber =
as.numeric(tempx[1]), organism =
tempx[2], rank = as.numeric(tempx[3]),
sequence = tempx[4], position =
as.numeric(tempx[5]), score=
as.numeric(tempx[6])))};return(tempy)}

Fig. 3. General representation of S4 Class for B Cell epitope data along with R scripts.

setClass("Propred", representation(ginumber =
"numeric",organism= "character", Allele=
"character", Rank= "numeric", Sequence=
"character", Position= "numeric", Score= "numeric"))

readdata.propred <-function(xz){xa<-
readLines(con = xz); tempy<- NULL;for (i in
seq (along = xa)){tempx<-
unlist(strsplit(xa[i],"\t"));tempy<- c(tempy,
new("Propred", ginumber =
as.numeric(tempx[1]), organism =
tempx[2],Allele= tempx[3], Rank=
as.numeric(tempx[4]), Sequence= tempx[5],
Position= as.numeric(tempx[6]), Score=
as.numeric(tempx[7])))};return(tempy)}

Fig. 4. General representation of S4 Class for T Cell epitope data.

www.intechopen.com

Biological Data Modelling and Scripting in R

267

Fig. 5. Decision tree to identify non-allergen proteins fulfilling all first layer conditions. The
R scripts are shown in the following two boxes.

S4 Methods
setGeneric("getfl_filtered",function(object)
standardGeneric("getfl_filtered"));setMethod("getfl_filtered","FirstLayer",function(obj
ect){if ((object@tmhelices < 2) && (object@Hrefhits== "No Hits found") &&
((object@subcelllocal == "Extracellular") || (object@subcelllocal ==
"OuterMembrane"))) {return (object@ginumber)}else{return(FALSE)}})
setGeneric("nonallergen_algpred",function(object)
standardGeneric("nonallergen_algpred"));setMethod("nonallergen_algpred","Algpre
d",function(object){if
(object@ovpr == "Non Allergen") {return (object@ginumber)}else{return(FALSE)}})
setGeneric("nonallergen_allermatch",function(object)
standardGeneric("nonallergen_allermatch"));setMethod("nonallergen_allermatch","Al
lermatch",function(object){if
(object@prediction == "Non Allergen") {return
(object@ginumber)}else{return(FALSE)}})

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

268

Fig. 6. Decision tree to identify high scoring B cell and T cell epitopes. The R scripts follow in
the next two boxes.

R Scripts
res1<- sapply(ecalgpred,nonallergen_algpred); res2<-
sapply(ecallermatch,nonallergen_allermatch)
resA<- union(res1,res2); resB <- sapply(ecflnew,getfl_filtered); resC<-
intersect(resA,resB)

www.intechopen.com

Biological Data Modelling and Scripting in R

269

S4 Methods
setGeneric("getgibce", function(object)
standardGeneric("getgibce"));setMethod("getgibce","Bcepred",function(object){
object@ginumber})
setGeneric("getgi_abcepitopes", function(object,x)
standardGeneric("get_abc_epi_gi"));setMethod("get_abc_epi_gi","ABCpred",fu
nction(object,x){if (object@score >= x) {return
(object@ginumber)}else{return(FALSE)}})
setGeneric("getgipropred", function(object)
standardGeneric("getgipropred"));setMethod("getgipropred","Propred",functio
n(object){object@ginumber})
setGeneric("getgi_bimasepitopes",function(object,x)
standardGeneric("getgi_bimasepitopes"));setMethod("getgi_bimasepitopes","Bi
mas",function(object,x){if (object@Score >= x) {return
(object@ginumber)}else{return(FALSE)}})
setGeneric("getgi_NetMHCNNepitopes",function(object)
standardGeneric("getgi_NetMHCNNepitopes"));setMethod("getgi_NetMHCN
Nepitopes","NetMHCneuralnet",function(object){if (object@Bind_level == "SB")
{return (object@ginumber)}else{return(FALSE)}})
setGeneric("getgi_NetMHCwtepitopes",function(object)
standardGeneric("getgi_NetMHCwtepitopes
"));setMethod("getgi_NetMHCwtepitopes
","NetMHCwtmatrix",function(object){if (object@Bind_level == "SB") {return
(object@ginumber)}else{return(FALSE)}})
setGeneric("getgi_iedbmhciepitopes", function(object,x)
standardGeneric("getgi_iedbmhciepitopes
"));setMethod("getgi_iedbmhciepitopes ","IEDB_mhci",function(object,x){if (
object@IC50 < x) {return (object@ginumber)}else{return(FALSE)}})
setGeneric("get_iedb_mhciiepi_gi", function(object,x)
standardGeneric("get_iedb_mhciiepi_gi"));setMethod("get_iedb_mhciiepi_gi","I
EDB_mhcii",function(object,x){if (object@IC50 < x) {return
(object@ginumber)}else{return(FALSE)}})

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

270

6.2 Systems biology data
Systems biology deals with a system-level understanding of biological systems. A system
can be defined by a set of interacting entities, which are linked to each other by direct and
indirect interactions. A biological system is a very complex network, which cannot be
described by reductionist’s approach because it gives us a limited knowledge of a particular
gene or protein that is insufficient to understand the complex behavior of a biological
network. There is a need to integrate all the knowledge and comprehend new networks,
which provide the overall picture of a system. These inferred networks can be used for
further computational analysis and if found promising, can be validated through
experiments. System level understanding requires the integration of experimental and
computational biology. Modeling is the best method to represent a pathway and is the
easiest way to understand a complex network. A network is modeled as a graph, which is
the formal mathematical representation of the network and consists of nodes and edges. The
network can be shown diagrammatically by using classical graph theory. All type of pathways
(e.g. Gene regulatory network, signal transduction and metabolic pathways) can be modeled
using various modeling techniques. A modeler uses two types of approaches- Data driven
pathway modeling and Knowledge based pathway modeling, depending on the
presence/absence of sufficient literature (Viswanathan et al., 2008). If the knowledge is
limited, data driven pathway modeling becomes the best choice. These modeling techniques
are also known as qualitative (Data driven) and quantitative (Knowledge driven) modeling
approaches. Data driven pathway modeling requires the DNA microarray data set. For
example, the Gene Regulatory network (GRN) can be inferred by using logical networks like
Boolean networks, probabilistic Boolean network and dynamic Bayesian networks (Li et al.,
2007).

R Scripts
resabc<- sapply(eclabc,getgi_abcepitopes,0.9); nrresABC<- union(resabc,resabc);
resbce<- sapply(eclbce,getgibce); nrresBCE <- union(resbce,resbce); resfl1<-
intersect(nrresABC,nrresBCE); resbimas <-
sapply(ecbimas,getgi_bimasepitopes,100); nrresBIMAS <-
union(resbimas,resbimas); resiedb<-
sapply(ec_iedb_mhci,getgi_iedbmhciepitopes,50); resiedbmhc1 <-
sapply(ec_iedb_mhcii, getgi_iedbmhciiepitopes, 50); nrresIEDBMHC2 <-
union(resiedbmhc1,resiedbmhc1); resnetmhcnn<-
sapply(ecNetMHCneuralnet,getgi_NetMHCNNepitopes); nrresNETMHCNN <-
union(resnetmhcnn,resnetmhcnn); resnetmhcwtmat <-
sapply(ecNetMHCwtmatrix,getgi_NetMHCwtepitopes); nrresNETMHCWTMAT
<- union(resnetmhcwtmat,resnetmhcwtmat); respropred<-
sapply(ecpropred,getgipropred); nrresPROPRED<-
union(respropred,respropred); nr1<- intersect(nrresBIMAS,nrresIEDB); nr2<-
intersect(nr1,nrresIEDBMHC2); nr3<- intersect(nr2,nrresNETMHCNN); nr4<-
intersect(nr3,nrresNETMHCWTMAT); nr5<- intersect(nr4,nrresPROPRED);
selectedgis<- intersect(resfl1,nr5)
finalgis<- intersect(selectedgis,resC)

www.intechopen.com

Biological Data Modelling and Scripting in R

271

A quantitative model describes a system with a set of mathematical equations. Recently,
many software tools have been developed for quantitative modeling of biological systems.
We know that all physiochemical reactions follow a physical or chemical principle. For
example a given enzyme catalysis reaction may follow the Michaelis Menten kinetics
(Nelson et al, 2000). Thus, every reaction in kinetic model is represented in kinetic equation,
which is then solved by the ordinary differential equation. In other words, a model is
represented as a system of ODEs (Ordinary Differential Equations) for each of the reactions
involved in the pathway (Tyson et al., 2001). If kinetic parameters are available, ODE based
modeling becomes the best tool to understand dynamics of network.
There are variety of bioinformatics tools available for modeling systems in many platforms.
(Table 1 and Table 2)

Task Tools Web address

Model construction

CellDesigner
Jarnac
Jdesigner
Gepasi

http://www.celldesigner.org/
http://sys-bio.org/
http://sys-bio.org/
http://www.gepasi.org/

Simulation

CellDesigner
COPASI
Gepasi
SBaddon (MatLab tool)

http://www.celldesigner.org/
http://www.copasi.org/
http://www.gepasi.org/
http://www.mathworks.com/

Model Analysis MatLab,
R- environment

http://www.mathworks.com/
http://www.r-project.org/

Table 1. Bioinformatics tools for systems modeling in different platforms.

Package Name Application

BoolNet Generation, reconstruction, simulation and analysis of synchronous,
asynchronous, and probabilistic Boolean networks

odesolve Solver for ordinary differential equations

lpSolve Interface to solve linear/integer programs

nlme Linear and non-linear mixed effect model

SBML-R SBML are R interface analysis tool

Table 2. Tools for systems modeling in R platform

6.2.1 Examining the expression pattern of genes in clinical strains, an example
This process is initiated by first collecting the microarray data from public repository. Next

data normalization needs to be done. Log (base=10) transformed data can be used to

normalize by using classical Z-score transformation method (Cheadle et al., 2003). Z-score

reflects the relative expression condition of the genes. On the basis of z-score values we can

categorize genes in many categories like highly expressed, moderately expressed and genes

with low expression. We can also filter those genes having the z-score values higher than

given cutoff in all samples or strains. The consistency of expression across the different

samples or strains can be explained using Heatmap. R scripts may be used to obtain genes

having z-score above 1 which would provide genes which are highly expressed. Heatmap

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

272

can be generated by using the R scripts. These heatmaps are false color image and very

helpfull for visual comparison of different datasets. Dendrogram can be added on rows and

columns by defining the heatmap arguments. The function Heatmap is provided by

Bioconductor (Gentleman et al, 2004).

Fig. 7. Heat map of all probesets with z-score greater than 1.0 in all 12 samples. Red – Lower
limit, Yellow - Upper limit gene expression Zscores. The sample ids are labelled below.

www.intechopen.com

Biological Data Modelling and Scripting in R

273

Fig. 8. Decision tree to identify highly expressed genes in clinical strains.

setClass("ZscoreEcoli",representation(pro
be_id = "character", expressionmat =
"matrix"))

readdata.ZscoreEcoliExp<- function(xz){xa<-

readLines(con = xz); tempy<- NULL;for (i in seq (along

= xa)){tempx<- unlist(strsplit(xa[i],"\t"));tempy<-

c(tempy, new("ZscoreEcoli", probe_id = tempx[1],

expressionmat =

matrix(c(as.numeric(tempx[2]),as.numeric(tempx[3]),as.

numeric(tempx[4]),as.numeric(tempx[5]),as.numeric(te

mpx[6]),as.numeric(tempx[7]),as.numeric(tempx[8]),as.

numeric(tempx[9]),as.numeric(tempx[10]),as.numeric(t

empx[11]),as.numeric(tempx[12]),as.numeric(tempx[13]

)), nrow=1,ncol=12))) }; return(tempy)}

[11]),as.numeric(tempx[12]),as.numeric(tempx[13])),

nrow=1,ncol=12))) }; return(tempy)}

Fig. 9. Representation of S4 Class “ZscoreEcoli”.

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

274

6.2.2 Identifications of the attractors in a simple Boolean network using BoolNet
package
Biological entities can have 2 possible logical states ON or OFF i.e. transcription of gene
being either ON or OFF, protein is either Present or Absent etc. A system is more intuitively
understandable by logical assumptions. Mainly Boolean logical network is used for the
gene regulatory networks. Here we have implemented it on a more simple metabolic
reactions network. Here we have chosen 3 reactions of genes involved in metabolic
pathways of Mycobacterium tuberculosis, which are consistently highly expressed in 12
different strains (Gao et al., 2005). This Boolean network consists of 8 genes. Simple rules are
written for reaction by using AND and OR Boolean operators. Attractors are the points in a
network towards which the system is evolved. Attractors can be steady states or cycles.
These are the states where system resides most of the time (Müssel et al., 2010).
###########
Boolean network with 8 genes
Involved genes:
nad coa oaa pyr sdhlam accoa succoa cit
Transition functions:
nad = nad
coa = coa
oaa = oaa
pyr = pyr
sdhlam = sdhlam
accoa = (coa & nad & pyr) | (cit & coa)

S4 Methods
setGeneric("getmatrix", function(object,x)
standardGeneric("getmatrix"));setMethod("getmatrix","ZscoreEcoli",function(object,x
){tempmat<- object@expressionmat; tempnew<- NULL; if ((tempmat[1,1] > x) &&
(tempmat[1,2] > x) && (tempmat[1,3] > x) && (tempmat[1,4] > x) && (tempmat[1,5]
> x)&& (tempmat[1,6] > x)&& (tempmat[1,7] > x)&& (tempmat[1,8] > x)&&
(tempmat[1,9] > x)&& (tempmat[1,10] > x)&& (tempmat[1,11] > x)&&
(tempmat[1,12] > x)) {tempnew <- new("ZscoreEcoli", probe_id = object@probe_id,
expressionmat = tempmat);return(tempnew)} else return(0)})

R Scripts
eczscore<- readdata.ZscoreEcoliExp("zscoreEcoli")
EcoliMat <- sapply(eczscore,getmatrix,1); EcoliMatFinal <- setdiff(EcoliMat,0)
mymat <- NULL; for (j in seq(along = EcoliMatFinal)){tempomat<-
EcoliMatFinal[[j]]@expressionmat; rownames(tempomat) <-
EcoliMatFinal[[j]]@probe_id; mymat<- rbind(mymat,tempomat)}
heatmap(mymat)

www.intechopen.com

Biological Data Modelling and Scripting in R

275

succoa = (coa & sdhlam)
cit = (accoa & oaa)
##########
Abbreviations
NAD = NAD, COA = Coenzyme-A, OAA = oxaloacetate, PYR = pyruvate, SDHLAM= S-
adenosyl-L-methionine, ACCOA= acetyl-CoA, CIT = citrate, SUCCOA = succinyl-coA
Description of network: -
1. AcetylCoA is formed by 2 reactions: Coenzyme A and NAD and Pyruvate OR Citrate

and Coenzyme A
2. SuccinylCoA is formed by Coenzyme A and S-adenosyl-L-methionine
3. Citrate is formed by Acetyl-CoA and Oxaloacetate
4. Species considered as constant (whose rules are not defined) e.g. NAD, OAA, PYR,

SDHLAM and COA

Fig. 10. Dependency among species in the example network of 8 genes

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

276

Fig. 11. Plot of different attractors in the network. Node is representing state and line
representing state transition. Colour in plot is corresponding to different basin of attraction.
We obtained total of 44 attractors for the network of which 39 have single state and 5
attractors have 2 states.

Fig. 12. Plot of Attractors with 2 states (from subsets 39 to 44). Red colour given for inactive
genes and green colour is given for active genes. Each attractor given in plot is contributing
1.56% in the network.

www.intechopen.com

Biological Data Modelling and Scripting in R

277

Even though this is simple reaction network, yet it is giving the view about the states where
system can reside most of the time i.e. attractors in the network. We can study the knockout
and over expression in a complex network. Robustness study of the network is also possible
by studying network behavior through knocking out genes.

6.3 Chemoinformatics data
The Chemoinformatics branch is the interface between Computer applications and
Chemistry and deals with problems of the field of the chemistry. Chemoinformatics
concentrates on molecular modelling, chemical structure coding and searching, data
visualization etc.
Molecular modelling involves the use of theoretical methods and computational techniques
to model or mimic the behavior of molecules. It helps reduce the complexity of the system,
allowing many more particles (atoms) to be considered during simulations. Data
visualization is the study of the visual representation of data by graphical means.
Chemoinformatics is useful specially to solve drug discovery related problems. Drug-like or
Lead identifications are done through various in-silico methods in chemoinformatics. Drug-
like compounds refer to the compounds, which follow the lipinski’s rule and have structural
similarities with the known drugs and bind to the active site of the target but have not been
tested in laboratory. There are also various databases available helping in this direction.

Functions Tools Links

Databases for
searching Known
Inhibitors

Pubchem
Pubmed
Drug Bank

http://pubchem.ncbi.nlm.nih.gov/search/search.
cgi
http://www.ncbi.nlm.nih.gov/pubmed
http://www.drugbank.ca/

Molecular
Visualization

Pymol
Rasmol
SwissPDBviewer

http://www.pymol.org
http://rasmol.org
http://spdbv.vital-it.ch/

Structres drawn
StructuresViewed

Marvin Sketch
Chemmine

http://www.chemaxon.com/products/marvin/
marvinsketch
http://bioweb.ucr.edu/ChemMineV2

File Format
Translator

Smile Translator
OpenBabel

http://cactus.nci.nih.gov/translate/
http://openbabel.org/wiki/Main_Page

Drug Designing AutoDock
GOLD

http://autodock.scripps.edu/
http://www.ccdc.cam.ac.uk/products/life_scienc
es/gold/

Toxicity prediction Toxtree http://toxtree.sourceforge.net/

Molecular dynamics
simulation

GROMACS http://www.gromacs.org/

Table 3. Softwares used in Cheminformatics.

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

278

Package Name Principle Application

ChemmineR Uses Tanimoto
coefficient as the
similarity measure

Atom-pair descriptors calculation with the help
of functions included within it, 2D structural
similarity searching, clustering of compound
libraries, visualization of clustering results and
chemical structures.

Rcdk Allow an user to access
functions of CDK (JAVA
library for
Chemiinformatics) on R
platform

Reading molecular file formats, performing ring
perception, aromaticity detection to fingerprint
generation and determining molecular
descriptors of various properties of Drug-Like
compounds

Rpubcem Uses various functions
for data retrieval

Helps access the datas and assays of
compounds from pubchem

ic50 Helps determine the
efficiency of a newly
found drug like molecule

Calculates IC50

Bio3D Analysis of protein
structure and sequence
data

Protein structure analysis, comparative analysis
with different proteins, aligns protein
sequences.

Table 4. Tools useful in Chemoinformatics in R

6.3.1 Identification of drug-like compounds
In this era, with the rise in number of infectious life threatening diseases due to clever
change at sequence level of the pathogenic organism, discovery of new potential drugs
holds immense importance. In this direction various in-silico chemoinformatics tools
mentioned in Table 3 are helpful. In the problem regarding identification of Drug-like
compounds the initial step would include literature search for known inhibitors of the
disease target. Similarly a database of publicly available drug like molecules is obtained
from various databases like ZINC (Irwin et al., 2005), NCI (Voigt et al., 2001) database etc.
Thereafter Marvin sketch (MarvinSketch 5.3.8, 2010) may be used to draw the known
inhibitors and their analogs, which need to be saved in file formats: Structure Data Format
(SDF) and Simplified Molecular Input Line Entry Specification (SMILES). Using
ChemmineR package (Cao et al, 2008) on R platform similarity search of Known inhibitor
with the database of publicly available drug-like molecules is done using Tanimoto
Coefficient where a desirable cutoff score e.g. 0.6 may be used as cutoff score to obtain a list
of similar lead compounds. This list corresponds to a number of compounds similar to the
known inhibitors. The properties of these similar compounds are calculated with another
package of R called rcdk (Guha et al, 2007). The Lipinski’s rule of five can be applied to
further shortlist. The solubility of these compounds can be analysed by pHSol 1.0 Server
(Hansen et al, 2006). For analyzing protein-ligand binding, docking is done using AutoDock
software (Goodsell et al, 1996). If the ligand binds to the active site, only then it may have
pontential to interfere with protein function thereby eligible for further testing. Thereafter to
test its potential further, energy minimization and simulation are done with various
softwares eg. GROMACS (Hess et al., 2008). The ligand fulfilling all the desirable drug like
quality and showing good stability over a reasonable time period of simulations (5-10
nanoseconds) may be selected as a candidate for testing. This process is represented as
decision tree (Figure 13).

www.intechopen.com

Biological Data Modelling and Scripting in R

279

Fig. 13. Decision tree to identify Drug like compounds.

setClass(Class="MolDescriptors",representation=representation
(Mol_id="numeric",TPSA="numeric",nHBAcc="numeric",nHB
Don="numeric",nRotB="numeric",LipinskiFailures="numeric",
MW="numeric",XLogP="numeric",SMILE="character"))

readdata.MolDescriptors=
function(filename){x=readLines(
con=filename);temp=NULL;obj=
NULL;for(i in
2:length(x)){temp=unlist(strsplit(
x[i],"\t"));print
(temp);obj=c(obj,new("MolDescri
ptors",Mol_id=as.numeric(temp[
1]),TPSA=as.numeric(temp[2]),n
HBAcc=as.numeric(temp[3]),nH
BDon=as.numeric(temp[4]),nRot
B=as.numeric(temp[5]),LipinskiF
ailures=as.numeric(temp[6]),MW
=as.numeric(temp[7]),XLogP=as.
numeric(temp[8]),SMILE=temp[
9]));}return(obj);}

Fig. 14. Representation of S4 Class “MolDescriptors” with R scripts to accomplish the
construction.

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

280

6.4 Text mining
During last few decades there has been enormous increase in the size of research data in the

form of scientific articles, abstracts and books, online databases and many more. This text

data may be structured or unstructured and need of hour is to mine for useful information

from text data.

Thus text mining has evolved widely as an interdisciplinary discipline using methods from

computer sciences, linguistics and statistics. R provides intelligent ways in accessing and

integrating the treasure of information hidden in the scientific journals, papers and other

electronic media. It is most often used to perform statistical and data mining analyses and is

best known for its ability to analyze structured data. Majority of people read only abstracts

of papers so as to save time and avoid in going into details of irrelevant articles. The tm R-

package provides complete platform that efficiently processes various text documents to

extract useful information (Feinerer et al, 2008). The database backend support also

minimizes the memory demands to handle very large data sets in R. It accepts text data

either from local database or directly from online database.

6.4.1 An example of text mining PubMed abstracts to get frequently appearing gene
symbols and drug names
We downloaded abstracts for PubMed query “Glioma” from PubMed. We formatted these

abstracts in R so as to get a file containing PMIDs, Titles, Abstract Text and Journal Name in

separate columns. We create the S4 class object of this Abstract file. Now if we have to

search for any abstract containing a pattern or word of our interest we use regexpr function

in R to get all those abstracts e.g. pathway.

From these filtered Glioma pathway abstracts a Corpus (collection of large text) is generated

using tm package function. This Corpus is subjected to Stemming, Stop word removal,

common English word removal using R libraries rJava, RWeka (Hornik et al, 2009),

RWekajars, slam, Snowball (Hornik, 2009), Corpora. We can set other controls as well. Now

we can create term document matrix from this Corpus, containing all terms as rows and

abstracts as columns. From this term document matrix we can extract the terms within

different frequency ranges i.e., their number of occurrences in each abstract indicating

their importance. Thus we can predict that terms which have higher frequency of

occurrence in the matrix are more important and are related in some sense. We have filtered

all the terms with frequency of their occurrence greater than 5.

S4 method to get filtered molecular Descriptor Data
setGeneric("FilterMols",function(obj,x)standardGeneric("FilterMols"));
setMethod("FilterMols",
"MolDescriptors",function(obj,x){if(obj@LipinskiFailures==x){return(obj);}else{return(
0);}})

Example R Scripts to get filtered molecular Descriptor Data
result=sapply(mol,FilterMols,1); result_final=setdiff(result,"0")

www.intechopen.com

Biological Data Modelling and Scripting in R

281

These terms were ‘intersect’ with HUGO Gene Nomenclature Committee data set (HGNC)
(Bruford et al, 2008) and drug names from DrugBank (Knox, et al 2011). We thus get the list
of all the gene symbols, gene names, gene aliases and drug names in the said frequency
range from term document matrix. We now determine the total count of their occurrence in
matrix so as to rank these extracted genes and drugs. We can make clusters from these data
and can find gene-drug, gene-gene, and drug-gene interactions in different ranges of
correlation. The decision tree is shown in Figure 15. The dataclasses with their
representations is described in Figure 16.

Fig. 15. Decision tree to identify Glioma that include pathway in the text.

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

282

setClass("TextMining", representation(PMID = "numeric",

Title ="character",Abstract = "character", Journal_Name =

"character"))

readdata.textmining<-
function(xz){xa<- readLines(con =
xz);tempy<- NULL;for (i in seq (along
= xa)){tempx<-
unlist(strsplit(xa[i],"\t"));tempy<-
c(tempy, new("TextMining", PMID =
as.numeric(tempx[1]), Title = temp[2],
Abstract = tempx[3], Journal_Name =
tempx[4]))};return(tempy)}

Fig. 16. Representation of S4 Class “TextMining” with R scripts to accomplish the
construction.

6.5 Getting data from Pfam and PRINTS for a specified domain or pattern name.
Pfam data for a specified domain name or PRINTS data for specified pattern name may be

extracted using S4 scripts. The process is summarized below in form of decision tree (Figure

17). The dataclasses with their representations is described in Figure 18 and Figure 19.

S4 Methods

setGeneric("getAbstract", function(object) standardGeneric("getAbstract"));

setMethod("getAbstract","TextMining",function(object){if

(regexpr(pattern="pathway",object@Abstract,fixed=TRUE)!=-1){return

(object@Abstract)}});

www.intechopen.com

Biological Data Modelling and Scripting in R

283

Fig. 17. Decision tree to identify data from Pfam and PRINTS for a specified domain or
pattern name.

R Scripts
filtered<- sapply(textfile,getAbstract)
doc1 <- filtered[!sapply(filtered,is.null)]
library(tm);library(rJava);library(RWekajars);library(RWeka);library(slam);library(
Snowball);library(corpora);
doc2<-Corpus(VectorSource(doc1))
setcontrol<-list(minDocFreq = 6, removeNumbers = FALSE, stemming = TRUE,
stopwords = TRUE)
TDM<-TermDocumentMatrix(doc2,control=setcontrol)
Terms<-inspect(TDM[1:17,1])
Terms1<-as.data.frame(Terms)
write.table(Terms1,file="Terms1.txt",sep="\t")
write.table(Terms1,file="Terms1.txt",col.names=FALSE,sep="\t")
Terms2<-read.table("Terms1.txt",header=FALSE,sep="\t")
FilteredTerms<-as.character(Terms2[1:17,1])
load("HGNC_GENE_IDS.RData")
load("DrugNamesDrugBank.RData")
AllGeneSymbols<-c(as.character(HGNC_GENE_IDS[1:19363,2])); AllGeneNames<-
c(as.character(HGNC_GENE_IDS[1:19363,3])); AllGeneAliases<-
c(as.character(HGNC_GENE_IDS[1:19363,6])); AllDrugNames<-
c(as.character(DrugNamesDrugBank[1:6824,1]))
getGeneSymbols<-intersect(AllGeneSymbols,FilteredTerms); getGeneNames<-
intersect(AllGeneNames,FilteredTerms); getGeneAliases<-
intersect(AllGeneAliases,FilteredTerms); getDrugNames<-
intersect(AllDrugNames,FilteredTerms)
z1<- charmatch(getGeneSymbols,FilteredTerms)
for(i in 1:4){b<-NULL;b<-z1[i];sumFreqOccurence<-NULL;sumFreqOccurence<-
sum(inspect(TDM[b,1:22]));write(sumFreqOccurence,file="SumFreqOccurence.txt",
append=TRUE,sep=",")}

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

284

setClass("Prints",representation(ginumber =
"numeric",organism
="character",FingerPrint="character",E_value=
"numeric"))

readdata.prints<- function(xz){xa<-
readLines(con = xz); tempy<- NULL;for (i
in seq (along = xa)){tempx<-
unlist(strsplit(xa[i],"\t"));tempy<- c(tempy,
new("Prints", ginumber =
as.numeric(tempx[1]), organism =
tempx[2],FingerPrint=tempx[3], E_value=
as.numeric(tempx[4])))};return(tempy)}

Fig. 18. Representation of S4 Class “Prints” with R scripts to accomplish the construction.

setClass("Pfam",representation(ginumber =
"numeric",organism ="character",alignment_start =
"numeric",alignment_end = "numeric",envelope_start=
"numeric",envelope_end=
"numeric",hmm_acc="character",hmm_name="character",
type="character",hmm_start= "numeric",hmm_end=
"numeric",hmm_length= "numeric",bit_score=
"numeric",E_value= "numeric",significance=
"numeric",clan="character"))

readdata.pfam<- function(xz){xa<-
readLines(con = xz); tempy<-
NULL;for (i in seq (along =
xa)){tempx<-
unlist(strsplit(xa[i],"\t"));tempy<-
c(tempy, new("Pfam", ginumber =
as.numeric(tempx[1]), organism =
tempx[2],alignment_start=
as.numeric(tempx[3]),alignment_end=
as.numeric(tempx[4]),envelope_start=
as.numeric(tempx[5]), envelope_end=
as.numeric(tempx[6]),hmm_acc=
tempx[7],hmm_name= tempx[8],type=
tempx[9],hmm_start=
as.numeric(tempx[10]),hmm_end=
as.numeric(tempx[11]),hmm_length=
as.numeric(tempx[12]),bit_score=
as.numeric(tempx[13]),E_value=
as.numeric(tempx[14]), significance=
as.numeric(tempx[15]),clan=
tempx[16]))};return(tempy)}

Fig. 19. Representation of S4 Class “Pfam”along with R scripts to accomplish the
construction.

www.intechopen.com

Biological Data Modelling and Scripting in R

285

7. Parallel computing

When the data size is large (example in millions) and fast information calculation and

retrieval is needed, a single modern computational processor fails to fulfill the purpose. In

that case, a number of processors are needed to work simultaneously, each carrying out
same set of operations on different data objects. This type of approach is called Parallelization

on data level; the processing time for a single object is not being reduced but a number of data

objects are being processed during the same time-interval by separate processors.
The Rmpi package (Yu, 2010) is helpful in this direction. We used ChemmineR (Cao et al
2008) using Rmpi, an interface to MPI (Message Passing Interface). In MPI, processes
communicate with each other by sending and receiving messages. We made a library of
small molecules of size around 26 millions in SDF file format from various publicly and
commercially available sources; these molecules were distributed over 1792 files. We have
used ChemmineR's cmp.parse() function to get corresponding atom-pair descriptors and
these were stored in .rda files. These .rda files constitute our database. Our aim was to find
molecules similar to a given query molecule.
On a typical workstation of 1GB RAM and Intel(R) Pentium(R) 4 CPU 3.40GHz, it takes
about 5 hrs to complete a similarity search. In order to increase the speed we have used
Rmpi (version: 0.5-8) along with Open MPI (version 1.3.2) – A High Performance Message
Passing Library and implemented the Data Level Parallelization on ROCKS (release 4.3)
cluster- an open-source Linux cluster distribution with eight nodes having Intel(R)
Xeon(TM) CPU 3.60GHz processors. The result was a significant increase in performance
and the job was done within 30 minutes. This approach has been shown in Figure 20 as a
flowchart.

S4 Methods
setGeneric("get_prints",function(object,x)
standardGeneric("get_prints"));setMethod("get_prints","Prints",function(object,x){if
(object@FingerPrint == x) {tempo<-
paste(object@ginumber,object@organism,object@FingerPrint,object@E_value, sep="
"); return (tempo)}else {return(0)} })
setGeneric("get_pfam",function(object,x)
standardGeneric("get_pfam"));setMethod("get_pfam","Pfam",function(object,x){if (
object@hmm_name == x) {tempo<- paste(object@ginumber,object@organism,
object@alignment_start, object@alignment_end, object@envelope_start,
object@envelope_end, object@hmm_acc, object@hmm_name, object@type,
object@hmm_start, object@hmm_end, object@hmm_length, object@bit_score,
object@E_value, object@significance, object@clan, sep=" "); return (tempo)}else
{return(0)} })

R Scripts
result1<- sapply(eclprints,get_prints,"HOMSERKINASE");result1<- setdiff(result1,"0")
result1<- sapply(eclpfam,get_pfam,"DnaJ");result1<- setdiff(result1,"0")

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

286

Fig. 20. Figure describing the parallel computing process, parallelization on data level.

8. Building your own package

The various R objects and S4 methods can be encapsulated into .RData named according to
the selected problem. All these packages can be sourced from the link
http://sourceforge.net/projects/sysbior/.

9. Conclusion

Various packages to handle biological data of diverse type of problems have been
developed with the help of S4 object oriented programming. The S4 objects can be handled
with ease applying S4 methods to fetch useful data. The process described here may also be
modified with novel thought process to create S4 methods to fetch useful analysis data
accomplishing other conditions.

10. References

Bui, H.H., Sidney, J., Peters, B., Sathiamurthy, M., Sinichi, A., Purton, K.A., Mothé, B.R.,
Chisari, F.V., Watkins, D.I. & Sette, A. (2005). Automated generation and evaluation

www.intechopen.com

Biological Data Modelling and Scripting in R

287

of specific MHC binding predictive tools: ARB matrix applications, Immunogenetics,
Vol. 57, No. 5, (June 2005), pp. 304-314.

Bruford, E.A., Lush, M.J., Wright, M.W., Sneddon, T.P., Povey, S. & Birney, E. (2008). The
HGNC Database in 2008: a resource for the human genome, Nucleic Acids Res, Vol.
36, Suppl No. 1, (January 2008), pp. D445-D448.

Cao, Y., Charisi, A., Cheng, L.C., Jiang, T. & Girke, T. (2008). ChemmineR: a compound mining
framework for R, Bioinformatics, Vol. 24, No. 15, (August 2008), pp. 1733-1774.

Chaudhuri, R., Ahmed, S., Ansari, F.A., Singh, H.V. & Ramachandran, S. (2008). MalVac:
database of malarial vaccine candidates, Malar J, Vol. 7, No. 184,(September 2008),
pp. 1-7.

Chaudhuri, R., Ansari, F.A., Raghunandan, M.V. & Ramachandran, S. (2011). FungalRV:
Adhesin prediction and Immunoinformatics portal for human fungal pathogens.
BMC Genomics, Vol. 12, No. 192, (April 2011).

Cheadle, C., Vawter, M.P. & Freed, W.J. (2003). Analysis of Microarray data using Z-score
transformation, Mol Diagn, Vol. 5, No. 2, (May 2003), pp. 73-81.

Feinerer, I., Hornik, K. & Meyer, D. (2008). Text mining infrastructure in R, Journal of
Statistical Software, Vol. 25, No. 5, (March 2008), ISSN 1548-7660.

Fiers, M.W., Kleter, G.A., Nijland, H., Peijnenburg, A.A., Nap, J.P. & van Ham, R.C. (2004).
Allermatch, a webtool for the prediction of potential allergenicity according to
current FAO/WHO Codex alimentarius guidelines, BMC Bioinformatics, Vol. 5,
(September 2004).

Gao, Q., Kripke, K.E., Saldanha, A.J., Yan, W., Holmes, S. & Small, P.M. (2005). Gene
expression diversity among Mycobacterium tuberculosis clinical isolates,
Microbiology, Vol. 151, No.1, (January 2005), pp. 5-14.

Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L.,
Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li,
C., Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J.Y.
& Zhang, J. (2004). Bioconductor: open software development for computational
biology and bioinformatics, Genome Biol, Vol. 5, No. 10, (September 2004).

Goodsell, D. S., Morris, G. M. & Olson, A. J. (1996). Automated Docking of Flexible Ligands:
Applications of AutoDock, J. Mol. Recognition, Vol. 9, pp. 1-5.

Guha, R. (2007). Chemical Informatics Functionality in R, Journal of Statistical Software, Vol.
18, No. 5, (January 2007), ISSN 1548-7660.

Hansen, N.T., Kouskoumvekaki, I., Jørgensen, F.S., Brunak, S. & Jónsdóttir, S. O. (2006).
Prediction of pH-dependent aqueous solubility of druglike molecules, J Chem Inf
Model, Vol. 46, No. 6, (November 2006), pp. 2601-2609.

Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. (2008). GROMACS 4: Algorithms for
Highly Efficient, Load-Balanced, and Scalable Molecular Simulation, J. Chem. Theory
Comput., Vol. 4, No. 3, (February 2008), pp. 435–447.

Hornik, K. (August 2009). Snowball: Snowball Stemmers, In: R-project.org, 12.12.2010,
Available from: http://CRAN.R-project.org/package=Snowball

Hornik, K., Buchts, C. & Zeileis, A. (2009). Open-Source Machine Learning: R Meets Weka,
Computational Statistics, Vol. 24, No. 2, (May 2009), pp. 225-232, ISSN: 0943-4062.

Irwin, J.J. & Shoichet, B. K. (2005). ZINC--a free database of commercially available
compounds for virtual screening, J Chem Inf Model., Vol. 45, No. 1, (2005), pp. 177-182.

Knox, C., Law, V., Jewison, T., Liu, P., Ly, S., Frolkis, A., Pon, A., Banco, K., Mak, C., Neveu,
V., Djoumbou, Y., Eisner, R., Guo, A.C. & Wishart, D.S. (2011). DrugBank 3.0: a
comprehensive resource for 'omics' research on drugs, Nucleic Acids Res., Vol. 39,
Suppl. No. 1, (January 2011), pp. 1035-1041.

www.intechopen.com

Systems and Computational Biology – Bioinformatics and Computational Modeling

288

Li, P., Zhang, C., Perkins, E., Gong, P. & Deng, Y. (2007). Comparision of probabilistic
Boolean network and dyanamic Bayesian network approaches for inferring
regulatory networks, BMC Bioinformatics, (November 2007), Vol. 8, Suppl. No. 7.

Lundegaard, C., Lamberth, K., Harndahl, M., Buus, S., Lund, O. & Nielsen, M. (2008).
NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey
MHC class I affinities for peptides of length 8-11, Nucleic Acids Res., Vol. 36, Suppl.
No. 2, pp. W509-W512.

Maimon, O. & Rokach, L. (2005). Decision Trees, In: Data Mining and Knowledge Discovery
Handbook, O. Maimon, & L. Rokach, (Ed.), pp. 165-192, Springer, ISBN: 978-0-387-
25465-4, United States of America.

MarvinSketch 5.3.8. (2010). In: ChemAxon, 10.11.2010, Available from:
http://www.chemaxon.com
Müssel, C., Hopfensitz, M. & Kestler, H.A. (2010). BoolNet--an R package for generation,

reconstruction and analysis of Boolean networks, Bioinformatics, Vol. 26, No. 10,
(May 2010), pp. 1378-1380

Nelson, D.L. & Cox, M.M. (2000). Enzymes, In: Lehninger Principles of biochemistry, 3rd Edition,
W.H. Freeman, (Ed.), pp. 190-237, Worth Publishers, ISBN 1-57259-9316, New York.

Parker, K.C., Bednarek, M.A. & Coligan, J.E. (1994). Scheme for ranking potential HLA-A2
binding peptides based on independent binding of individual peptide side-chains, J
Immunol., Vol. 152, No. 1, (January 1994), pp. 163-175, ISSN: 0022-1767.

R Development Core Team (2010). R: A language and environment for statistical computing,
In: R Foundation for Statistical Computing, ISBN 3-900051-07-0, Available from:
http://www.R-project.orgSaha, S. & Raghava, G.P.S. (2006). AlgPred: prediction of
allergenic proteins and mapping of IgE epitopes, Nucleic Acids Res., Vol. 34, Suppl.
No. 2, (July 2006), pp. W202-209.

Saha, S. & Raghava, G.P.S. (2006). Prediction of Continuous B-cell Epitopes in an Antigen
Using Recurrent Neural Network, Proteins, Vol. 65, No. 1, (October 2006), pp. 40-48.

Saha, S. & Raghava, G. P. S. (2007). Prediction methods for B-cell epitopes, Methods Mol.
Biol., Vol. 409, No. 4, pp. 387-394.

Singh, H. & Raghava, G. P. S. (2001). ProPred: Prediction of HLA-DR binding sites,
Bioinformatics, Vol. 17, No. 12, (December 2001), pp. 1236-1237.

Tyson, J., Chen, K. & Novak, B. (2001). Network dynamics and cell physiology, Nature Rev.
Mol Cell. Biol., Vol. 2, No. 12, (December 2001), pp. 908-916.

Viswanathan, G., Seto, J., Patil, S., Nudelman, G. & Sealfon, S. (2008). Getting started in
biological pathway construction and analysis, PLoS comp. biol., Vol. 4, No. 2 (e16),
(February 2008), pp. 0001-0005.

Vivona, S., Gardy, J. L., Ramachandran, S., Brinkman, F.S., Raghava, G.P.S, Flower, D.R. &
Filippini, F. (2008). Computer-aided biotechnology: from immuno-informatics to
reverse vaccinology, Trends Biotechnol., Vol. 26, No. 4, (April 2008), pp. 190-200.

Voigt, J.H., Bienfait, B., Wang, S. & Nicklaus, M.C. (2001). Comparison of the NCI open
database with seven large chemical structural databases, J Chem Inf Comput Sci.,
Vol. 41, No. 3, (May-Jun 2001), pp. 702-712.

Yu, H. (November 2010). Rmpi: Interface (Wrapper) to MPI (Message-Passing Interface), In:
cran.r-project.org, 6.1.2011, Available from:

 http://CRAN.R-project.org/package=Rmpi
Zhang, Q., Wang, P., Kim, Y., Haste-Andersen, P., Beaver, J., Bourne, P. E., Bui, H. H., Buus, S.,

Frankild, S., Greenbaum, J., Lund, O., Lundegaard, C., Nielsen, M., Ponomarenko, J.,
Sette, A., Zhu, Z. & Peters, B. (2008). Immune epitope database analysis resource
(IEDB-AR), Nucleic Acids Res., Vol. 36, Suppl. No. 2, (July 2008), pp. W513-W518.

www.intechopen.com

Systems and Computational Biology - Bioinformatics and

Computational Modeling

Edited by Prof. Ning-Sun Yang

ISBN 978-953-307-875-5

Hard cover, 334 pages

Publisher InTech

Published online 12, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Whereas some â€œmicroarrayâ€ or â€œbioinformaticsâ€ scientists among us may have been criticized as

doing â€œcataloging researchâ€ , the majority of us believe that we are sincerely exploring new scientific and

technological systems to benefit human health, human food and animal feed production, and environmental

protections. Indeed, we are humbled by the complexity, extent and beauty of cross-talks in various biological

systems; on the other hand, we are becoming more educated and are able to start addressing honestly and

skillfully the various important issues concerning translational medicine, global agriculture, and the

environment. The two volumes of this book present a series of high-quality research or review articles in a

timely fashion to this emerging research field of our scientific community.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Srinivasan Ramachandran, Rupanjali Chaudhuri, Srikant Prasad Verma, Ab Rauf Shah, Chaitali Paul, Shreya

Chakraborty, Bhanwar Lal Puniya and Rahul Shubhra Mandal (2011). Biological Data Modelling and Scripting

in R, Systems and Computational Biology - Bioinformatics and Computational Modeling, Prof. Ning-Sun Yang

(Ed.), ISBN: 978-953-307-875-5, InTech, Available from: http://www.intechopen.com/books/systems-and-

computational-biology-bioinformatics-and-computational-modeling/biological-data-modelling-and-scripting-in-r

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

