366 research outputs found

    United States v. Grier

    Get PDF

    Proximity effect in planar superconducting tunnel junctions containing Nb/NiCu superconductor/ferromagnet bilayers

    Get PDF
    We present experimental results concerning both the fabrication and characterization of superconducting tunnel junctions containing superconductor/ferromagnet (S/F) bilayers made by niobium (S) and a weak ferromagnetic Ni0.50Cu0.50 alloy. Josephson junctions have been characterized down to T=1.4 K in terms of current-voltage I-V characteristics and Josephson critical current versus magnetic field. By means of a numerical deconvolution of the I-V data the electronic density of states on both sides of the S/F bilayer has been evaluated at low temperatures. Results have been compared with theoretical predictions from a proximity model for S/F bilayers in the dirty limit in the framework of Usadel equations for the S and F layers, respectively. The main physical parameters characterizing the proximity effect in the Nb/NiCu bilayer, such as the coherence length and the exchange field energy of the F metal, and the S/F interface parameters have been also estimated

    Cardiovascular events and treatment of children with high risk medulloblastoma

    Get PDF
    Background: Children with high-risk medulloblastoma are treated with chemotherapeutic protocols which may affect heart function. We aimed to assesscardiovascular events (CVE) in children with medulloblastoma/primitive neuroectodermal tumors (PNET). Methods: We retrospectively collected data from a case series of 22 children with high-risk medulloblastoma/PNET admitted to the Santobono-Pausilipon Hospital, Naples, Italy from 2008 to 2016. All patients received the Milan HART protocol for high-risk brain malignancies as first line treatment (induction phase), followed by a consolidation phase with Thiotepa and hematopoietic stem cells transplantation, except for 1 patient who received the Milan HART as second line therapy. Four patients also received second line treatment, while 4 patients also received maintenance therapy. Patients underwent cardiac examination, including ECG, echocardiography and serum biomarkers, before antineoplastic treatment initiation and then when clinically needed. Six patients developed CVE (CVE group); 16 patients had no CVE (NO-CVE group). Findings: In the CVE group, 3 patients presented acute CVE during chemotherapy (2 patients with left ventricular (LV) dysfunction, 1 patient with arterial hypertension), while 3 patients presented chronic CVE after chemotherapy completion (2 patients with LV dysfunction, 1 patient with ectopic atrial tachycardia). After a 51 months median follow-up, 9 patients died: 4 from the CVE group (in 2 cases heart failure-related deaths) and 5 from the NO-CVE group (progression of disease). Interpretation: A relevant percentage of children treated for medulloblastoma/PNET develops CVE. Heart failure potentially due to chemotherapy may represent a cause of death. Hence, in these patients, strict cardiac surveillance is essential. Funding: No funding was associated with this study

    Italian version of the pittsburgh rehabilitation participation scale: Psychometric analysis of validity and reliability

    Get PDF
    Patient’s active participation in therapy is a key component of successful rehabilitation. In fact, low participation has been shown to be a prognostic factor of poor outcome; however, participation is rarely assessed in clinical settings. The Pittsburgh Rehabilitation Participation Scale (PRPS) is a validated, quick, and accurate measure of participation, relying on clinicians’ observation, and not requiring any self-report by patients. The aim of this study was to validate an Italian version of the PRPS. Following forward and back-translation of PRPS into Italian, the translated version was validated in a total of 640 therapy sessions, related to a cohort of 32 patients admitted to an Italian hospital. It was tested for concurrent validity, finding significant correlations with Barthel Index (R > 0.58, p < 0.001) and SF-36 Physical and Mental Health (R > 0.4, p < 0.02), for predictive validity, finding significant correlation with the effectiveness of rehabilitation (R = 0.358, p = 0.045), and for inter-rater and intra-rater reliability, computing an Intra-class correlation coefficient (ICC = 0.926 and 0.756, respectively). These psychometric properties results were similar to those of the original version of this scale. The proposed PRPS can be helpful for Italian clinicians in the assessment of patient’s participation during rehabilitation

    The role of salt bridges, charge density, and subunit flexibility in determining disassembly routes of protein complexes

    Get PDF
    Mass spectrometry can be used to characterize multiprotein complexes, defining their subunit stoichiometry and composition following solution disruption and collision-induced dissociation (CID). While CID of protein complexes in the gas phase typically results in the dissociation of unfolded subunits, a second atypical route is possible wherein compact subunits or subcomplexes are ejected without unfolding. Because tertiary structure and subunit interactions may be retained, this is the preferred route for structural investigations. How can we influence which pathway is adopted? By studying properties of a series of homomeric and heteromeric protein complexes and varying their overall charge in solution, we found that low subunit flexibility, higher charge densities, fewer salt bridges, and smaller interfaces are likely to be involved in promoting dissociation routes without unfolding. Manipulating the charge on a protein complex therefore enables us to direct dissociation through structurally informative pathways that mimic those followed in solution

    Observation of the magnetic domain structures in Cu0,47_{0,47}Ni0,53_{0,53} thin films at low temperatures

    Full text link
    We report on the first experimental visualization of domain structure in films of weakly ferromagnetic Cu0,47_{0,47}Ni0,53_{0,53} alloy with different thickness at liquid helium temperatures. Improved high-resolution Bitter decoration technique was used to map the magnetic contrast on the top of the films well below the Curie temperature TCurie_{Curie} (\sim 60 K). In contrast to magnetic force microscopy, this technique allowed visualization of the domain structure without its disturbance while the larger areas of the sample were probed. Maze-like domain patterns, typical for perpendicular magnetic anisotropy, were observed. The average domain width was found to be about 100 nm.Comment: 4 pages, 5 figures, will be published in JETP Let

    Integrating Ion Mobility Mass Spectrometry with Molecular Modelling to Determine the Architecture of Multiprotein Complexes

    Get PDF
    Current challenges in the field of structural genomics point to the need for new tools and technologies for obtaining structures of macromolecular protein complexes. Here, we present an integrative computational method that uses molecular modelling, ion mobility-mass spectrometry (IM-MS) and incomplete atomic structures, usually from X-ray crystallography, to generate models of the subunit architecture of protein complexes. We begin by analyzing protein complexes using IM-MS, and by taking measurements of both intact complexes and sub-complexes that are generated in solution. We then examine available high resolution structural data and use a suite of computational methods to account for missing residues at the subunit and/or domain level. High-order complexes and sub-complexes are then constructed that conform to distance and connectivity constraints imposed by IM-MS data. We illustrate our method by applying it to multimeric protein complexes within the Escherichia coli replisome: the sliding clamp, (β2), the γ complex (γ3δδ′), the DnaB helicase (DnaB6) and the Single-Stranded Binding Protein (SSB4)

    Proinflammatory Modulation of the Surface and Cytokine Phenotype of Monocytes in Patients With Acute Charcot Foot

    Get PDF
    Despite increased information on the importance of an inappropriate inflammatory response in the acute Charcot process, there has been no previous attempt to define the specific pathways that mediate its pathogenesis. Here, the role played by monocytes was analyzed

    Skp is a multivalent chaperone of outer membrane proteins

    Get PDF
    The trimeric chaperone Skp sequesters outer-membrane proteins (OMPs) within a hydrophobic cage, thereby preventing their aggregation during transport across the periplasm in Gram-negative bacteria. Here, we studied the interaction between Escherichia coli Skp and five OMPs of varying size. Investigations of the kinetics of OMP folding revealed that higher Skp/OMP ratios are required to prevent the folding of 16-stranded OMPs compared with their 8-stranded counterparts. Ion mobility spectrometry–mass spectrometry (IMS–MS) data, computer modeling and molecular dynamics simulations provided evidence that 10- to 16-stranded OMPs are encapsulated within an expanded Skp substrate cage. For OMPs that cannot be fully accommodated in the expanded cavity, sequestration is achieved by binding of an additional Skp trimer. The results suggest a new mechanism for Skp chaperone activity involving the coordination of multiple copies of Skp in protecting a single substrate from aggregation

    Separating and visualising protein assemblies by means of preparative mass spectrometry and microscopy

    Get PDF
    a b s t r a c t Many multi-protein assemblies exhibit characteristics which hamper their structural and dynamical characterization. These impediments include low copy number, heterogeneity, polydispersity, hydrophobicity, and intrinsic disorder. It is becoming increasingly apparent that both novel and hybrid structural biology approaches need to be developed to tackle the most challenging targets. Nanoelectrospray mass spectrometry has matured over the last decade to enable the elucidation of connectivity and composition of large protein assemblies. Moreover, comparing mass spectrometry data with transmission electron microscopy images has enabled the mapping of subunits within topological models. Here we describe a preparative form of mass spectrometry designed to isolate specific protein complexes from within a heterogeneous ensemble, and to 'soft-land' these target complexes for ex situ imaging. By building a retractable probe incorporating a versatile target holder, and modifying the ion optics of a commercial mass spectrometer, we show that we can steer the macromolecular ion beam onto a target for imaging by means of transmission electron microscopy and atomic force microscopy. Our data for the tetradecameric chaperonin GroEL show that not only are the molecular volumes of the landed particles consistent with the overall dimensions of the complex, but also that their gross topological features can be maintained
    corecore