10 research outputs found

    Roadmap for implementing environmental DNA (eDNA) and other molecular monitoring methods in Finland – Vision and action plan for 2022–2025

    Get PDF
    Roadmap for implementing environmental DNA (eDNA) and other molecular monitoring methods in Finland – Vision and Action Plan for 2022-2025 Technological development in molecular methodology has been extremely fast in the past two decades, and groundbreaking new approaches have been introduced. It is now possible to detect and quantify DNA or RNA of target species or even map the whole species community in environmental samples of water, sediment, soil, air or assemblages of whole organisms. Moreover, the costs of high-throughput sequencing and other advanced molecular methods have decreased and methodological pipelines from sampling to data analysis developed sufficiently to allow large-scale, routine application of the new methods in environmental monitoring. This presents a huge opportunity to improve the coverage, accuracy and cost-efficiency of monitoring, enabling a much more complete picture of biodiversity and the state of the environment and their trends. As the new European Biodiversity Strategy for 2030 and other international policies to halt biodiversity loss and the degradation of habitats are translated into concrete measures, the quality of the monitoring data will play a crucial role in determining their success or failure. In this roadmap commissioned by the Finnish Ministry of the Environment, we assess the state-of-the-art in molecular monitoring methods in Finland within the international context, identify challenges and development areas that remain to be addressed and propose an action plan for promoting the coordinated implementation of molecular methods in national monitoring programs. Apart from the most recent scientific literature, our analysis is based on survey results, direct enquiries and interviews. Participation of the national community of experts from different sectors was enabled and invited at several stages of the roadmap preparation. Internationally, molecular monitoring methods are being actively developed and are routinely implemented in monitoring across different taxa and ecosystems. In Finland, molecular monitoring methods have been tested and piloted by all major institutions responsible for environmental monitoring, and the methods are already applied routinely in the monitoring of individual game species such as the wolf and European and Canadian beaver. However, other areas such as the monitoring of biodiversity, threatened species, non-mammalian invasive species or emerging plant or animal pests remain less developed, and national efforts and expertise are scattered across different organizations. Funding and know-how are perceived as the most important factors limiting molecular monitoring method implementation. We estimate that extensive, routine implementation of a wide range of molecular monitoring methods is conceivable in Finland before 2030. As the primary development areas for reaching this goal, we identify (i) international coordination and standard development, (ii) networking across sectors, (iii) education, (iv) infrastructure, (v) reference sequence libraries and the mapping of whole genomes, and (vi) modelling and analysis tool development. For concrete actions in 2022–2025, we propose (1) a cross-governmental funding instrument, (2) a permanent working group responsible for national and international coordination, (3) a national network and (4) an online platform to enhance interaction and knowledge transfer, as well as (5) a national data management system with collectively agreed data and metadata formats and standards. ---------- Kansallinen tiekartta ympäristö-DNA:n ja muiden molekyylibiologisten seurantamenetelmien käyttöönotolle – visio ja toimenpidesuunnitelma vuosille 2022-2025 Molekyylibiologisten menetelmien teknologinen kehitys on ollut ennennäkemättömän nopeaa kahden viime vuosikymmenen aikana. Uudet menetelmät mahdollistavat kohdelajien DNA:n tai RNA:n havaitsemisen ja runsausmäärityksen tai koko eliöyhteisön kartoittamisen esimerkiksi vesi-, sedimentti-, maaperä- tai ilmanäytteistä tai kokonaisia yksilöitä sisältävistä kokoomanäytteistä. Massiivisen rinnakkaissekvensoinnin ja muiden menetelmien kustannukset ovat merkittävästi laskeneet ja menetelmäketjut näytteenotosta tulosten tulkintaan kehittyneet asteelle, joka mahdollistaa niiden laajamittaisen, rutiininomaisen käytön ympäristön seurannassa. Uusien menetelmien avulla voimme parantaa seurannan kattavuutta, tarkkuutta ja kustannustehokkuutta ja siten täydentää seurannan kautta muodostuvaa kuvaa luonnon monimuotoisuudesta ja sen muutoksista. Tälle tiedolle on suuri tarve – laadukas seuranta on keskeinen edellytys sille, että EU:n uuden biodiversiteettistrategian ja muiden luontokadon ja elinympäristöjen tilan huonontumisen pysäyttämiseen tähtäävien kansainvälisten sitoumusten toimeenpano onnistuu. Tässä ympäristöministeriön tilaamassa tiekartassa arvioimme molekyylibiologisten seurantamenetelmien nykytilaa Suomessa osana laajempaa kansainvälistä kenttää, tunnistamme huomiota vaativia haasteita ja kehityskohteita ja ehdotamme konkreettisia toimenpiteitä molekyylibiologisten seurantamenetelmien koordinoidun käyttöönoton edistämiseksi lähivuosien aikana. Selvityksemme perustuu uusimman tieteellisen kirjallisuuden lisäksi kyselytutkimukseen sekä suoriin tiedusteluihin ja haastatteluihin. Yhteiskunnan eri sektoreita edustava kansallinen asiantuntijayhteisö osallistui tiekartan valmisteluun työn eri vaiheissa. Molekyylibiologisia seurantamenetelmiä kehitetään parhaillaan aktiivisesti ympäri maailmaa eri eliöryhmille ja ekosysteemeille, ja yksittäisiä menetelmiä on useissa maissa otettu myös rutiininomaiseen käyttöön. Suomessa menetelmiä on kehitetty ja pilotoitu kaikissa keskeisissä ympäristön seurantaa koordinoivissa laitoksissa, ja yksittäisten riistaeläinten kuten suden ja kanadan- ja euroopanmajavan seurannassa ne ovat jo rutiinikäytössä. Biodiversiteetin, uhanalaisten lajien, vieraslajien (nisäkkäitä lukuun ottamatta) ja muiden haitallisten lajien kansallisessa seurannassa molekyylibiologisten menetelmien käyttö on kuitenkin vielä kokeiluasteella, ja kehittämishankkeiden ja asiantuntijuuden kenttä on hajanainen. Riittämätöntä rahoitusta ja osaamista pidetään alan asiantuntijoiden keskuudessa tärkeimpinä menetelmien käyttöönottoa rajoittavina tekijöinä. Arviomme mukaan laaja kirjo molekyylibiologisia seurantamenetelmiä olisi mahdollista ottaa laajamittaiseen rutiininomaiseen käyttöön vuoteen 2030 mennessä. Tärkeimmiksi kehityskohteiksi nousivat (i) kansainvälinen koordinaatio ja menetelmien standardointi, (ii) organisaatioiden ja sektoreiden välinen verkostoituminen, (iii) koulutus, (iv) infrastruktuuri, (v) referenssisekvenssikirjastot ja kokonaisten genomien kartoittaminen sekä (vi) malli- ja analyysityökalujen kehittäminen. Konkreettisiksi toimenpiteiksi vuosille 2022-2025 esitämme (1) poikkihallinnollista rahoitusohjelmaa molekyylibiologisten seurantamenetelmien käyttöönottoa edistäville tutkimus- ja kehityshankkeille, (2) pysyvää työryhmää kansallisen ja kansainvälisen koordinaation edistämiseksi, (3) olemassa olevan kansallisen asiantuntijaverkoston laajentamista, (4) internet-pohjaista alustaa vuorovaikutuksen ja tiedonjaon tehostamiseksi sekä (5) kansallista, yhdessä sovittuja data- ja metadatastandardeja noudattavaa molekyylibiologisten seuranta-aineistojen tiedonhallintajärjestelmää

    Roadmap for implementing environmental DNA (eDNA) and other molecular monitoring methods in Finland–Vision and action plan for 2022–2025

    Get PDF
    Technological development in molecular methodology has been extremely fast in the past two decades, and groundbreaking new approaches have been introduced. It is now possible to detect and quantify DNA or RNA of target species or even map the whole species community in environmental samples of water, sediment, soil, air or assemblages of whole organisms. Moreover, the costs of high-throughput sequencing and other advanced molecular methods have decreased and methodological pipelines from sampling to data analysis developed sufficiently to allow large-scale, routine application of the new methods in environmental monitoring. This presents a huge opportunity to improve the coverage, accuracy and cost-efficiency of monitoring, enabling a much more complete picture of biodiversity and the state of the environment and their trends. As the new European Biodiversity Strategy for 2030 and other international policies to halt biodiversity loss and the degradation of habitats are translated into concrete measures, the quality of the monitoring data will play a crucial role in determining their success or failure. In this roadmap commissioned by the Finnish Ministry of the Environment, we assess the state-ofthe-art in molecular monitoring methods in Finland within the international context, identify challenges and development areas that remain to be addressed and propose an action plan for promoting the coordinated implementation of molecular methods in national monitoring programs. Apart from the most recent scientific literature, our analysis is based on survey results, direct enquiries and interviews. Participation of the national community of experts from different sectors was enabled and invited at several stages of the roadmap preparation. Internationally, molecular monitoring methods are being actively developed and are routinely implemented in monitoring across different taxa and ecosystems. In Finland, molecular monitoring methods have been tested and piloted by all major institutions responsible for environmental monitoring, and the methods are already applied routinely in the monitoring of individual game species such as the wolf and European and Canadian beaver. However, other areas such as the monitoring of biodiversity, threatened species, non-mammalian invasive species or emerging plant or animal pests remain less developed, and national efforts and expertise are scattered across different organizations. Funding and know-how are perceived as the most important factors limiting molecular monitoring method implementation. We estimate that extensive, routine implementation of a wide range of molecular monitoring methods is conceivable in Finland before 2030. As the primary development areas for reaching this goal, we identify (i) international coordination and standard development, (ii) networking across sectors, (iii) education, (iv) infrastructure, (v) reference sequence libraries and the mapping of whole genomes, and (vi) modelling and analysis tool development. For concrete actions in 2022–2025, we propose (1) a cross-governmental funding instrument, (2) a permanent working group responsible for national and international coordination, (3) a national network and (4) an online platform to enhance interaction and knowledge transfer, as well as (5) a national data management system with collectively agreed data and metadata formats and standards

    A Comparison of Rule-based Analysis with Regression Methods in Understanding the Risk Factors for Study Withdrawal in a Pediatric Study

    No full text
    Regression models are extensively used in many epidemiological studies to understand the linkage between specific outcomes of interest and their risk factors. However, regression models in general examine the average effects of the risk factors and ignore subgroups with different risk profiles. As a result, interventions are often geared towards the average member of the population, without consideration of the special health needs of different subgroups within the population. This paper demonstrates the value of using rule-based analysis methods that can identify subgroups with heterogeneous risk profiles in a population without imposing assumptions on the subgroups or method. The rules define the risk pattern of subsets of individuals by not only considering the interactions between the risk factors but also their ranges. We compared the rule-based analysis results with the results from a logistic regression model in The Environmental Determinants of Diabetes in the Young (TEDDY) study. Both methods detected a similar suite of risk factors, but the rule-based analysis was superior at detecting multiple interactions between the risk factors that characterize the subgroups. A further investigation of the particular characteristics of each subgroup may detect the special health needs of the subgroup and lead to tailored interventions

    Early probiotic supplementation and the risk of celiac disease in children at genetic risk

    No full text
    Abstract Probiotics are linked to positive regulatory effects on the immune system. The aim of the study was to examine the association between the exposure of probiotics via dietary supplements or via infant formula by the age of 1 year and the development of celiac disease autoimmunity (CDA) and celiac disease among a cohort of 6520 genetically susceptible children. Use of probiotics during the first year of life was reported by 1460 children. Time-to-event analysis was used to examine the associations. Overall exposure of probiotics during the first year of life was not associated with either CDA (n = 1212) (HR 1.15; 95%CI 0.99, 1.35; p = 0.07) or celiac disease (n = 455) (HR 1.11; 95%CI 0.86, 1.43; p = 0.43) when adjusting for known risk factors. Intake of probiotic dietary supplements, however, was associated with a slightly increased risk of CDA (HR 1.18; 95%CI 1.00, 1.40; p = 0.043) compared to children who did not get probiotics. It was concluded that the overall exposure of probiotics during the first year of life was not associated with CDA or celiac disease in children at genetic risk

    Metabolite-related dietary patterns and the development of islet autoimmunity

    No full text

    Early Probiotic Supplementation and the Risk of Celiac Disease in Children at Genetic Risk

    No full text

    Association of Gluten Intake During the First 5 Years of Life With Incidence of Celiac Disease Autoimmunity and Celiac Disease Among Children at Increased Risk

    No full text
    corecore