148 research outputs found

    EMail-Verteiler zur Distribution digitaler Informationen im Zentrum für ZMK-Münster

    Full text link
    Auf der Basis verschiedener in HTML-Seiten integrierter PHP-Scripte können EMails an vordefinierte Zielgruppen, z.B. an alle Studenten, an alle Mitarbeiter einer Poliklinik oder auch an eine manuell selektierbare individuelle Liste von Personen geschickt werden. Der PHP-Server des Apache-Webserves sorgt für eine augenblickliche, schnelle Distribution ohne Abhängigkeit von Mail-Servern der Universität, persönlichen Providern oder lokalen EMail-Programmen. Digitale Verteiler sind herkömmlichen 'Snail-Mail'-Verteilern in Geschwindigkeit und Qualität weit überlegen und werden diese vermutlich bald vollständig ersetzen können

    EVOG: a database for evolutionary analysis of overlapping genes

    Get PDF
    Overlapping genes are defined as a pair of genes whose transcripts are overlapped. Recently, many cases of overlapped genes have been investigated in various eukaryotic organisms; however, their origin and transcriptional control mechanism has not yet been clearly determined. In this study, we implemented evolutionary visualizer for overlapping genes (EVOG), a Web-based DB with a novel visualization interface, to investigate the evolutionary relationship between overlapping genes. Using this technique, we collected and analyzed all overlapping genes in human, chimpanzee, orangutan, marmoset, rhesus, cow, dog, mouse, rat, chicken, Xenopus, zebrafish and Drosophila. This integrated database provides a manually curated database that displays the evolutionary features of overlapping genes. The EVOG DB components included a number of overlapping genes (10‱074 in human, 10 ‱009 in chimpanzee, 67 ‱039 in orangutan, 51 001 in marmoset, 219 in rhesus, 3627 in cow, 209 in dog, 10 ‱700 in mouse, 7987 in rat, 1439 in chicken, 597 in Xenopus, 2457 in zebrafish and 4115 in Drosophila). The EVOG database is very effective and easy to use for the analysis of the evolutionary process of overlapping genes when comparing different species. Therefore, EVOG could potentially be used as the main tool to investigate the evolution of the human genome in relation to disease by comparing the expression profiles of overlapping genes. EVOG is available at http://neobio.cs.pusan.ac.kr/evog/

    Indirect exclusion of four candidate genes for generalized progressive retinal atrophy in several breeds of dogs

    Get PDF
    BACKGROUND: Generalized progressive retinal atrophy (gPRA) is a hereditary ocular disorder with progressive photoreceptor degeneration in dogs. Four retina-specific genes, ATP binding cassette transporter retina (ABCA4), connexin 36 (CX36), c-mer tyrosin kinase receptor (MERTK) and photoreceptor cell retinol dehydrogenase (RDH12) were investigated in order to identify mutations leading to autosomal recessive (ar) gPRA in 29 breeds of dogs. RESULTS: Mutation screening was performed initially by PCR and single strand conformation polymorphism (SSCP) analysis, representing a simple method with comparatively high reliability for identification of sequence variations in many samples. Conspicuous banding patterns were analyzed via sequence analyses in order to detect the underlying nucleotide variations. No pathogenetically relevant mutations were detected in the genes ABCA4, CX36, MERTK and RDH12 in 71 affected dogs of 29 breeds. Yet 30 new sequence variations were identified, both, in the coding regions and intronic sequences. Many of the sequence variations were in heterozygous state in affected dogs. CONCLUSION: Based on the ar transmittance of gPRA in the breeds investigated, informative sequence variations provide evidence allowing indirect exclusion of pathogenetic mutations in the genes ABCA4 (for 9 breeds), CX36 (for 12 breeds), MERTK (for all 29 breeds) and RDH12 (for 9 breeds)

    SnoRNA Snord116 (Pwcr1/MBII-85) Deletion Causes Growth Deficiency and Hyperphagia in Mice

    Get PDF
    Prader-Willi syndrome (PWS) is the leading genetic cause of obesity. After initial severe hypotonia, PWS children become hyperphagic and morbidly obese, if intake is not restricted. Short stature with abnormal growth hormone secretion, hypogonadism, cognitive impairment, anxiety and behavior problems are other features. PWS is caused by lack of expression of imprinted genes in a ∼4 mb region of chromosome band 15q11.2. Our previous translocation studies predicted a major role for the C/D box small nucleolar RNA cluster SNORD116 (PWCR1/HBII-85) in PWS. To test this hypothesis, we created a ∼150 kb deletion of the >40 copies of Snord116 (Pwcr1/MBII-85) in C57BL/6 mice. Snord116del mice with paternally derived deletion lack expression of this snoRNA. They have early-onset postnatal growth deficiency, but normal fertility and lifespan. While pituitary structure and somatotrophs are normal, liver Igf1 mRNA is decreased. In cognitive and behavior tests, Snord116del mice are deficient in motor learning and have increased anxiety. Around three months of age, they develop hyperphagia, but stay lean on regular and high-fat diet. On reduced caloric intake, Snord116del mice maintain their weight better than wild-type littermates, excluding increased energy requirement as a cause of hyperphagia. Normal compensatory feeding after fasting, and ability to maintain body temperature in the cold indicate normal energy homeostasis regulation. Metabolic chamber studies reveal that Snord116del mice maintain energy homeostasis by altered fuel usage. Prolonged mealtime and increased circulating ghrelin indicate a defect in meal termination mechanism. Snord116del mice, the first snoRNA deletion animal model, reveal a novel role for a non-coding RNA in growth and feeding regulation

    The Maristán stigma scale: a standardized international measure of the stigma of schizophrenia and other psychoses

    Get PDF
    Background: People with schizophrenia face prejudice and discrimination from a number of sources including professionals and families. The degree of stigma perceived and experienced varies across cultures and communities. We aimed to develop a cross-cultural measure of the stigma perceived by people with schizophrenia.Method: Items for the scale were developed from qualitative group interviews with people with schizophrenia in six countries. The scale was then applied in face-to-face interviews with 164 participants, 103 of which were repeated after 30 days. Principal Axis Factoring and Promax rotation evaluated the structure of the scale; Horn’s parallel combined with bootstrapping determined the number of factors; and intra-class correlation assessed test-retest reliability.Results: The final scale has 31 items and four factors: informal social networks, socio-institutional, health professionals and self-stigma. Cronbach’s alpha was 0.84 for the Factor 1; 0.81 for Factor 2; 0.74 for Factor 3, and 0.75 for Factor 4. Correlation matrix among factors revealed that most were in the moderate range [0.31-0.49], with the strongest occurring between perception of stigma in the informal network and self-stigma and there was also a weaker correlation between stigma from health professionals and self-stigma. Test-retest reliability was highest for informal networks [ICC 0.76 [0.67 -0.83]] and self-stigma [ICC 0.74 [0.64-0.81]]. There were no significant differences in the scoring due to sex or age. Service users in Argentina had the highest scores in almost all dimensions.Conclusions: The MARISTAN stigma scale is a reliable measure of the stigma of schizophrenia and related psychoses across several cultures. A confirmatory factor analysis is needed to assess the stability of its factor structure.We are also grateful for support from the Pan-American Health Office (PAHO), Camden and Islington NHS Foundation Trust and University College London (UCL)

    Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader–Willi syndrome

    Get PDF
    Prader–Willi syndrome (PWS) is an imprinting disorder caused by a deficiency of paternally expressed gene(s) in the 15q11–q13 chromosomal region. The regulation of imprinted gene expression in this region is coordinated by an imprinting center (PWS-IC). In individuals with PWS, genes responsible for PWS on the maternal chromosome are present, but repressed epigenetically, which provides an opportunity for the use of epigenetic therapy to restore expression from the maternal copies of PWS-associated genes. Through a high-content screen (HCS) of >9,000 small molecules, we discovered that UNC0638 and UNC0642—two selective inhibitors of euchromatic histone lysine N-methyltransferase-2 (EHMT2, also known as G9a)—activated the maternal (m) copy of candidate genes underlying PWS, including the SnoRNA cluster SNORD116, in cells from humans with PWS and also from a mouse model of PWS carrying a paternal (p) deletion from small nuclear ribonucleoprotein N (Snrpn (S)) to ubiquitin protein ligase E3A (Ube3a (U)) (mouse model referred to hereafter as m+/pΔS−U). Both UNC0642 and UNC0638 caused a selective reduction of the dimethylation of histone H3 lysine 9 (H3K9me2) at PWS-IC, without changing DNA methylation, when analyzed by bisulfite genomic sequencing. This indicates that histone modification is essential for the imprinting of candidate genes underlying PWS. UNC0642 displayed therapeutic effects in the PWS mouse model by improving the survival and the growth of m+/pΔS−U newborn pups. This study provides the first proof of principle for an epigenetics-based therapy for PWS
    corecore