23 research outputs found

    HMGB1 neutralization is associated with bacterial translocation during acetaminophen hepatotoxicity

    Get PDF
    Background Acetaminophen (APAP) hepatotoxicity is associated with a high rate of gram-negative enteric bacterial infection; however, the underlying mechanism is still unknown. APAP overdose induces massive hepatocyte necrosis, necrotic tissue releases high mobility group B1 (HMGB1) and exogenous HMGB1 is able to induce gut bacterial translocation (BT) in normal mice; therefore, it is possible that HMGB1 mediates gut BT in APAP hepatotoxicity. This study aims to test this hypothesis by using anti-HMGB1 neutralizing antibody to treat APAP overdose for 24-48 hours. Methods Male C57BL/6 mice were intraperitoneally (i.p.) injected with a single dose of APAP (350 mg/kg dissolved in 1 mL sterile saline). 2 hrs after APAP injection, the APAP challenged mice were randomized to receive treatment with either anti-HMGB1 antibody (400 μg per dose) or non-immune (sham) IgG every 24 h for a total of 2 doses. Results 24 and 48 hrs after APAP challenge, anti-HMGB1 treatment instead of sham IgG therapy significantly decreased serum HMGB1 concentrations and reduced BT by 85%; serum HMGB1 levels were positively correlated with the amount of BT; anti-HMGB1 therapy decreased hepatic BT at 48 h, which was associated with better recovered liver structure and better restored hepatic immune system that was shown by enhanced hepatic mRNA expression of TNF-α, IL-6 and extensive proliferation of inflammatory and reticuloendothelial cells; however, anti-HMGB1 treatment did not decrease gut mucosal permeability as compared to the sham IgG therapy at either 24 or 48 hrs. Conclusion HMGB1 neutralization is associated with bacterial translocation during APAP hepatotoxicity.BioMed Central open acces

    Ringer's lactate improves liver recovery in a murine model of acetaminophen toxicity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acetaminophen (APAP) overdose induces massive hepatocyte necrosis. Liver regeneration is a vital process for survival after a toxic insult. Since hepatocytes are mostly in a quiescent state (G<sub>0</sub>), the regeneration process requires the priming of hepatocytes by cytokines such as TNF-α and IL-6. Ringer's lactate solution (RLS) has been shown to increase serum TNF-α and IL-6 in patients and experimental animals; in addition, RLS also provides lactate, which can be used as an alternative metabolic fuel to meet the higher energy demand by liver regeneration. Therefore, we tested whether RLS therapy improves liver recovery after APAP overdose.</p> <p>Methods</p> <p>C57BL/6 male mice were intraperitoneally injected with a single dose of APAP (300 mg/kg dissolved in 1 mL sterile saline). Following 2 hrs of APAP challenge, the mice were given 1 mL RLS or Saline treatment every 12 hours for a total of 72 hours.</p> <p>Results</p> <p>72 hrs after APAP challenge, compared to saline-treated group, RLS treatment significantly lowered serum transaminases (ALT/AST) and improved liver recovery seen in histopathology. This beneficial effect was associated with increased hepatic tissue TNF-α concentration, enhanced hepatic NF-κB DNA binding and increased expression of cell cycle protein cyclin D1, three important factors in liver regeneration.</p> <p>Conclusion</p> <p>RLS improves liver recovery from APAP hepatotoxicity.</p

    Ethyl pyruvate is a novel anti-inflammatory agent to treat multiple inflammatory organ injuries

    Get PDF
    Ethyl pyruvate (EP) is a simple derivative of pyruvic acid, which is an important endogenous metabolite that can scavenge reactive oxygen species (ROS). Treatment with EP is able to ameliorate systemic inflammation and multiple organ dysfunctions in multiple animal models, such as acute pancreatitis, alcoholic liver injury, acute respiratory distress syndrome (ARDS), acute viral myocarditis, acute kidney injury and sepsis. Recent studies have demonstrated that prolonged treatment with EP can ameliorate experimental ulcerative colitis and slow multiple tumor growth. It has become evident that EP has pharmacological anti-inflammatory effect to inhibit multiple early inflammatory cytokines and the late inflammatory cytokine HMGB1 release, and the anti-tumor activity is likely associated with its anti-inflammatory effect. EP has been tested in human volunteers and in a clinical trial of patients undergoing cardiac surgery in USA and shown to be safe at clinical relevant doses, even though EP fails to improve outcome of the heart surgery, EP is still a promising agent to treat patients with multiple inflammatory organ injuries and the other clinical trials are on the way. This review focuses on how EP is able to ameliorate multiple organ injuries and summarize recently published EP investigations. Graphical Abstract The targets of the anti-inflammatory agent E

    HMGB1 and Histones Play a Significant Role in Inducing Systemic Inflammation and Multiple Organ Dysfunctions in Severe Acute Pancreatitis

    Get PDF
    Severe acute pancreatitis (SAP) starts as a local inflammation of pancreatic tissue that induces the development of multiple extrapancreatic organs dysfunction; however, the underlying mechanisms are still not clear. Ischemia-reperfusion, circulating inflammatory cytokines, and possible bile cytokines significantly contribute to gut mucosal injury and intestinal bacterial translocation (BT) during SAP. Circulating HMGB1 level is significantly increased in SAP patients and HMGB1 is an important factor that mediates (at least partly) gut BT during SAP. Gut BT plays a critical role in triggering/inducing systemic inflammation/sepsis in critical illness, and profound systemic inflammatory response syndrome (SIRS) can lead to multiple organ dysfunction syndrome (MODS) during SAP, and systemic inflammation with multiorgan dysfunction is the cause of death in experimental SAP. Therefore, HMGB1 is an important factor that links gut BT and systemic inflammation. Furthermore, HMGB1 significantly contributes to multiple organ injuries. The SAP patients also have significantly increased circulating histones and cell-free DNAs levels, which can reflect the disease severity and contribute to multiple organ injuries in SAP. Hepatic Kupffer cells (KCs) are the predominant source of circulating inflammatory cytokines in SAP, and new evidence indicates that hepatocyte is another important source of circulating HMGB1 in SAP; therefore, treating the liver injury is important in SAP

    HMGB1 and Extracellular Histones Significantly Contribute to Systemic Inflammation and Multiple Organ Failure in Acute Liver Failure

    Get PDF
    Acute liver failure (ALF) is the culmination of severe liver cell injury from a variety of causes. ALF occurs when the extent of hepatocyte death exceeds the hepatic regenerative capacity. ALF has a high mortality that is associated with multiple organ failure (MOF) and sepsis; however, the underlying mechanisms are still not clear. Emerging evidence shows that ALF patients/animals have high concentrations of circulating HMGB1, which can contribute to multiple organ injuries and mediate gut bacterial translocation (BT). BT triggers/induces systemic inflammatory responses syndrome (SIRS), which can lead to MOF in ALF. Blockade of HMGB1 significantly decreases BT and improves hepatocyte regeneration in experimental acute fatal liver injury. Therefore, HMGB1 seems to be an important factor that links BT and systemic inflammation in ALF. ALF patients/animals also have high levels of circulating histones, which might be the major mediators of systemic inflammation in patients with ALF. Extracellular histones kill endothelial cells and elicit immunostimulatory effect to induce multiple organ injuries. Neutralization of histones can attenuate acute liver, lung, and brain injuries. In conclusion, HMGB1 and histones play a significant role in inducing systemic inflammation and MOF in ALF
    corecore