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Acute liver failure (ALF) is the culmination of severe liver cell injury from a variety of causes. ALF occurs when the extent of
hepatocyte death exceeds the hepatic regenerative capacity. ALF has a high mortality that is associated with multiple organ
failure (MOF) and sepsis; however, the underlying mechanisms are still not clear. Emerging evidence shows that ALF patients/
animals have high concentrations of circulating HMGB1, which can contribute to multiple organ injuries and mediate gut
bacterial translocation (BT). BT triggers/induces systemic inflammatory responses syndrome (SIRS), which can lead to MOF in
ALF. Blockade of HMGB1 significantly decreases BT and improves hepatocyte regeneration in experimental acute fatal liver
injury. Therefore, HMGB1 seems to be an important factor that links BT and systemic inflammation in ALF. ALF patients/
animals also have high levels of circulating histones, which might be the major mediators of systemic inflammation in patients
with ALF. Extracellular histones kill endothelial cells and elicit immunostimulatory effect to induce multiple organ injuries.
Neutralization of histones can attenuate acute liver, lung, and brain injuries. In conclusion, HMGB1 and histones play a
significant role in inducing systemic inflammation and MOF in ALF.

1. Background

Acute liver failure is defined as a clinical syndrome char-
acterized by liver injury with evidence of coagulopathy
and any degree of altered mental status in a patient with-
out preexisting liver disease and duration of illness less
than 26 weeks [1–3]. The etiology varies with geography.
Hepatotrophic viruses are the most common cause of ALF
in developing countries [4, 5]; drugs are the most common
cause of ALF in the industrialized nations [4, 6]. The mor-
tality of ALF is as high as 40–50%, and the cause of death
in ALF includes brain herniation due to raised intracranial
pressure (35%) and sepsis with multiple organ failure [3].

Liver transplantation is the only therapeutic intervention
with proven survival benefit in patients with irreversible
ALF [2]. ALF patients are prone to infection due to the
immunologic defect and the high-dependency care they
require [7]. Between 39% and 57% of ALF patients expe-
rience bacterial infection [8]. ALF has a high rate of
infection with gram-negative enteric bacteria in animal
model [9]. Gram-negative and gram-positive bacteria can
elicit sepsis [7]. Infections and/or the resulting SIRS are
important contributing factors that worsen hepatic ence-
phalopathy (HE) [8]. ALF is associated with MOF and a
high incidence of sepsis (35.7%), which contributes to
23.1% of the mortality [7]; however, the underlying
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mechanism is still not clear. Early inflammatory mediators
(such as TNF-α, IL-6, and IL-1β) are certainly involved in
the pathogenesis of ALF [10]; however, these early cyto-
kines have limited clinical significance due to the narrow
therapeutic window. In contrast, HMGB1 is a late media-
tor of lethal systemic inflammation [11], and HMGB1 has
a prolonged therapeutic window as compared to those
early inflammatory cytokines; circulating TNF-α and IL-6
are elevated for 5 days after the onset of sepsis, and serum
HMGB1 levels are increased from day 7 until at least day
28 [12]. Emerging evidences indicate that HMGB1 is an
important factor that links gut BT and sepsis, and extra-
cellular histones are also important factors that signifi-
cantly contribute to MOF in ALF. In this manuscript, we
review the current understanding of HMGB1 and histones
in ALF.

2. The Role of HMGB1 in ALF

2.1. HMGB1 is a Typical Alarmin. Endogenous danger-
associated molecular patterns (DAMPs) are also known as
alarmins, which signal cellular damage and activate the
innate immune system [13]. Alarmins share the following
features: (a) rapid release from cells in response to infection
or tissue damage, (b) chemoattraction and activation of
antigen-presenting cells, and (c) activation of innate and
adaptive immunity [14]. HMGB1 is a typical alarmin [14].

2.2. Passive Release. HMGB1 can be passively released by
necrotic/damaged cells or actively secreted by immuno-
competent cells [15]. Under necrotic condition, contents
of the cytosol are dispersed into the extracellular space
due to cellular distress or damage [16]. In necrotic cells,
HMGB1 dissociates from chromatin and is released from
cells to trigger inflammation. However, HMGB1 remains
bound to chromatin and fails to promote inflammation
in cells undergoing apoptotic or programmed cell death,
in which cytosolic contents are sequestered and not “seen”
by innate immune cells [16].

2.3. Active Secretion. In response to proinflammatory stimuli
such as LPS, HMGB1 can be actively secreted by immuno-
competent cells. This active secretion occurs through a
two-step process. First, HMGB1 is translocated out of
the nucleus to the cytoplasm after JAK/STAT1-regulated
hyper-acetylation of lysine residues located in the A and
B box domains [17]. Once in the cytoplasm, HMGB1 is
actively secreted [17]. The active secretion of HMGB1
follows a nonclassical, vesicle-mediated pathway [18].

2.4. Redox State and Extracellular Functions. HMGB1 con-
tains three conserved redox-sensitive cysteines (C23, C45,
and C106), and posttranslational modification (oxidation)
of these cysteines determines the bioactivity of extracellular
HMGB1 [19]. The cytokine-stimulating activity of HMGB1
requires C23 and C45 to be in a disulfide linkage, while
C106 remains in a reduced state. This disulfide HMGB1
can bind and signal via TLR4/MD-2 complex to induce
cytokine release in macrophage [19]. Moreover, binding of
HMGB1 to TLR4 depends on reduced Cys106 [20]. If all

three cysteines are in reduced form, this all-thiol HMGB1
has chemotactic activity. This form is present under basal
conditions. Under inflammatory conditions, this all-thiol
HMGB1 is released and forms a heterocomplex with the
chemokine CXCL12 to interact with the chemokine receptor
CXCR4 to promote cell migration, but no inflammatory
cytokine secretion. The third form of HMGB1 occurs under
a state of complete oxidation wherein each cysteine is fully
oxidized to a sulfonyl form and is not associated with any
biological function [19]. Hyperacetylation of HMGB1 shifts
its equilibrium from a predominant nuclear location toward
a cytosolic and subsequent extracellular presence. Hence,
posttranslational modifications of HMGB1 determine its
role in inflammation and immunity [19].

2.5. ALF Releases HMGB1 as a Signal of Inflammation. ALF
occurs when the extent of hepatocyte death exceeds the
hepatic regenerative capacity [21], and the mode of the cell
death typically follows one of the two patterns: necrosis or
apoptosis [21]. In a clinical trial, HMGB1 represents the
circulating indicator of necrosis during acetaminophen hep-
atotoxicity; full-length and caspase-cleaved keratin-18 are
circulating markers of necrosis and apoptosis; hyper-
acetylated HMGB1 is a serum indicator of pyroptosis and
immune cell activation [22, 23]. Elevations in plasma
HMGB1 and keratin-18 can serve as mechanistic biomarkers
to provide early and sensitive detection of acetaminophen-
induced acute liver injury at first presentation to a hospital
[22]. Increased total and acetylated HMGB1 and full-
length keratin-18 are associated with worse prognosis
during clinical acetaminophen hepatotoxicity [23]. HMGB1
can be released readily from necrotic or damaged cells to
serve as a signal for inflammation [16, 24]. HMGB1 plays
an important role in modulating inflammatory cascade in
activated macrophages: HMGB1 stimulates macrophages
to release TNF-α and IL-6 [20, 25]. HMGB1 is a potent
mediator of systemic inflammation in sepsis [26].

2.6. HMGB1 Contributes to Multiple Organ Injuries.HMGB1
contributes to liver injury in experimental ischemia-
reperfusion [27]. Exogenous HMGB1 injection can induce
evident liver injury in mice [28]. HMGB1 impairs hepatocyte
regeneration and blockade of HMGB1 improves hepatocyte
regeneration in mice challenged with acetaminophen over-
dose [29]. A partly humanized anti-HMGB1 monoclonal
antibody attenuates acetaminophen hepatotoxicity and
postinjury inflammation in mice [30]. HMGB1 is released
into the serum at early stage of D-galactosamine/LPS-
induced ALF, and HMGB1 acts synergistically with TNF-α
to promote the inflammatory liver injury; this detrimental
effect can be reversed by monoclonal antibodies against
HMGB1 and TNF-α [31]. Inhibition of sphingosine kinase-
1 ameliorates experimental ALF by reducing high-mobility
group box 1 cytoplasmic translocation in liver cells [32].
HMGB1 contributes to renal ischemia-reperfusion injury
[33], sepsis-induced kidney injury [34], and severe acute
pancreatitis-related kidney injury [35]. HMGB1 also signifi-
cantly contributes to hemorrhagic shock-related acute lung
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injury (ALI) [36], hyperoxia-induced ALI [37], and severe
acute pancreatitis-related ALI [38].

2.7. HMGB1 Contributes to Gut Mucosal Injury andMediates
Gut BT in ALF. Gut mucosal injury and intestinal BT in ALF
is particularly important because the intestine is the biggest
reservoir of bacteria in the body and leakage of bacteria or
microbial products, notably LPS, from the lumen of the gut
into the systemic circulation, leads to initiation or amplifica-
tion of a systemic inflammatory response syndrome and
multiple organ dysfunction syndrome (MODS). Therefore,
the leaky gut is thought to be the “motor” that drives the
development of MODS [39].

The serum HMGB1 concentrations are significantly
increased in mice challenged with acetaminophen overdose
[29, 40]. ALF patients also have high concentrations of circu-
lating HMGB1, and the circulating HMGB1 levels are associ-
ated with disease severity [41, 42]. The circulating HMGB1
contributes to gut mucosal hyperpermeability and induces
evident BT in experimental hemorrhagic shock and reperfu-
sion [43], and exogenous HMGB1 injection can induce gut
hyperpermeability and BT in mice [28]. Except from the
circulating HMGB1, bile HMGB1 might also significantly
contribute to intestinal mucosa injury and induce evident
BT in ALF, because hepatitis E virus-related ALF is associ-
ated with significantly increased circulating LPS [44], and
LPS injection reduces 40% of bile flow in rats [45]; adequate
bile is required to maintain gut epithelial tight junction and
intestinal bacterial homeostasis [46]; decreased gut luminal
bile volume not only impairs intestinal tight junction but
also changes intestinal bacterial homeostasis to facilitate
BT [46, 47]. In addition, LPS injection (to normal animals)
markedly increases bile TNF-α and HMGB1 levels, which
can induce gut mucosal hyperpermeability and evident BT
in mice [45], and this detrimental effect can be reversed by
neutralization of the bile HMGB1 [45].

Experimental hepatotoxicity is associated with high inci-
dence of gut derived gram-negative bacterial infection [9, 40].
Acetaminophen overdose can induce evident gut BT and
severe intestinal mucosal injury in mice [40], and gut bacteria
can adhere to the injured mucosa, which is necessary but not
sufficient to induce gut BT [40], because blockade of HMGB1
reduces 85% of gut BT, but it does not decrease gut mucosal
permeability in experimental acetaminophen overdose [40].
This indicates that BT is mediated (at least partly) by
HMGB1 and BT is likely an active “transcellular” procedure
in which HMGB1 is also needed.

2.8. BT Induces/Triggers Systemic Inflammation,Which Leads
toMOF in ALF.Gut BT (or gut-derived LPS) induces/triggers
systemic inflammation in critical illness [48, 49]. SIRS can
lead to MOF in ALF [7]. Sepsis is a typical example of
SIRS triggered by infection [50]. Therefore, HMGB1 seems
to be an important factor that links BT and SIRS in ALF.

3. The Role of Extracellular Histones in ALF

3.1. ALF Patients/Animals Have High Concentrations of
Circulating Histones. ALF has a large number of hepatocyte

death [21]. The necrotic tissue/the dying hepatocytes
release HMGB1 and histones [50], which can contribute
to the high concentrations of circulating histones in ani-
mals challenged with concanavalin A and acetaminophen
overdose to induce two different acute fatal liver injury
models [50]. Circulating histones are significantly increased
in ALF patients and in patients with HBV-related acute-on-
chronic liver failure, and the levels of circulating histones
are correlated with disease severity and mortality [51, 52].
ALF patients also have elevated plasma histone-associated
DNA levels [53]. DAMPs activate innate immune cells in
the liver and the circulation, subsequently leading to tissue
inflammation and SIRS [53, 54].

3.2. Extracellular Histones Contribute to Multiple Organ
Injuries in ALF. Histones are important structural elements
of nuclear chromatin and regulate gene transcription [54];
however, extracellular histones are cell toxic to host cells
[50, 54] and elicit immunostimulatory effect that can induce
multiple organ injuries [50, 53–55]. Circulating histones
exacerbate inflammation in mice with ALF [56]. The sera
(containing high levels of histones) from ALF patients can
induce L02 cell (hepatocyte) death and stimulate U937 cells
(monocytes) to release inflammatory cytokines; these detri-
mental effects can be abolished by non-anticoagulant heparin
that can bind histones, suggesting that circulating histones
might be the major mediators of systemic inflammation
and cellular injury in patients with ALF [51]. The circulating
angiopoietin-2 levels, a marker of tissue endothelial dysfunc-
tion and leakage, are markedly increased in ALF patients
[53], and this might be due to the toxicity of extracellular his-
tones in ALF patients. Extracellular histones contribute to
acute fatal liver injury via TLR 2 and TLR4 receptors, and
neutralization of histones can ameliorate fatal liver injury in
mice [50]. The levels of circulating histones are significantly
higher after liver ischemia/reperfusion, the endogenous
histones function as alarmins in sterile inflammatory liver
injury through toll-like receptor 9, and neutralization of
histone significantly protects against injury [57]. Extracellu-
lar histones can induce microvascular endothelial injury,
and the TLR2/4-mediated inflammation leads to acute tubu-
lar necrosis in experimental acute kidney injury [58, 59].
Extracellular histones can injure endothelial cells to cause
microvascular thrombosis and hemorrhage in experimental
acute lung injury [60]. Histones also contribute to experi-
mental acute brain injury, and neutralization of histones
can reduce the infarct size [61]. Histone H4 and increased
circulating neutrophil extracellular traps (NETs) can activate
platelets; this may cause microvascular thrombosis in sepsis
[50, 55, 59, 62]. HMGB1 may induce the same biological
response [63]. Extracellular histones kill endothelial cells
and are one of the major mediators of death in sepsis [55].

4. Conclusions

HMGB1 and extracellular histones play a significant role in
inducing systemic inflammation and MOF in ALF; neutrali-
zation of HMGB1 and histones may present a novel therapy
to treat ALF.
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A graphical abstract is provided as the Supplementary
material available online at https://doi.org/10.1155/2017/
5928078.
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