2,933 research outputs found

    Distribution of Soils by Natural Drainage Class and by Slope Class for Iowa Counties

    Get PDF
    Natural drainage class (namely, poor, imperfect, and well drained) and slope class are estimated for Iowa counties through a 2% ÂĽ-section sample soil survey. Estimate of soil drainage class is given also by slope class. Counties vary widely in the amount of poorly drained soils. Kossuth County has 56.4% of poorly drained soils, while Allamakee has less than 1%. Land use management and conservation considerations are discussed briefly

    Distribution of Manganese in a Bio-Topo Sequence of Southeastern Iowa Soils

    Get PDF
    Manganese extractable by sodium hydrosulfite was determined for 9 soil profiles of a bio-topo (vegetation and drainage) sequence in southeastern Iowa. The distribution of manganese in the soils studied is influenced by vegetation, drainage, and pH. Under prairie vegetation the manganese is evenly distributed with depth in the well-drained soil, but with increasing wetness of the soil profile, manganese is apparently lost from the A1 horizon and accumulates in the lower part of the B horizon. Manganese accumulates in the A1 and A2 horizons of the well-drained soils developed under forest vegetation, but in profiles of increasing wetness the amount of manganese in the A1 and A2 horizons decreases and the amount of manganese in the lower B horizon increases. The distribution of manganese in the transition prairie forest soils was intermediate between soils developed under prairie vegetation and those developed under forest vegetation

    Exciton-plasmon states in nanoscale materials: breakdown of the Tamm-Dancoff approximation

    Full text link
    Within the Tamm-Dancoff approximation ab initio approaches describe excitons as packets of electron-hole pairs propagating only forward in time. However, we show that in nanoscale materials excitons and plasmons hybridize, creating exciton--plasmon states where the electron-hole pairs oscillate back and forth in time. Then, as exemplified by the trans-azobenzene molecule and carbon nanotubes, the Tamm-Dancoff approximation yields errors as large as the accuracy claimed in ab initio calculations. Instead, we propose a general and efficient approach that avoids the Tamm--Dancoff approximation, and correctly describes excitons, plasmons and exciton-plasmon states

    Center-of-Mass Properties of the Exciton in Quantum Wells

    Full text link
    We present high-quality numerical calculations of the exciton center-of-mass dispersion for GaAs/AlGaAs quantum wells of widths in the range 2-20 nm. The k.p-coupling of the heavy- and light-hole bands is fully taken into account. An optimized center-of-mass transformation enhances numerical convergence. We derive an easy-to-use semi-analytical expression for the exciton groundstate mass from an ansatz for the exciton wavefunction at finite momentum. It is checked against the numerical results and found to give very good results. We also show multiband calculations of the exciton groundstate dispersion using a finite-differences scheme in real space, which can be applied to rather general heterostructures.Comment: 19 pages, 12 figures included, to be published in Phys. Rev.

    Exact exchange-correlation potential for a time-dependent two electron system

    Get PDF
    We obtain an exact solution of the time-dependent Schroedinger equation for a two-electron system confined to a plane by an isotropic parabolic potential whose curvature is periodically modulated in time. From this solution we compute the exact time-dependent exchange correlation potential v_xc which enters the Kohn-Sham equation of time-dependent density functional theory. Our exact result provides a benchmark against which various approximate forms for v_xc can be compared. Finally v_xc is separated in an adiabatic and a pure dynamical part and it is shown that, for the particular system studied, the dynamical part is negligible.Comment: 23 pages, 6 figure

    Phase separation at all interaction strengths in the t-J model

    Full text link
    We investigate the phase diagram of the two-dimensional t-J model using a recently developed Green's Function Monte Carlo method for lattice fermions. We use the technique to calculate exact ground-state energies of the model on large lattices. In contrast to many previous studies, we find the model phase separates for all values of J/t. In particular, it is unstable at the hole dopings and interaction strengths at which the model was thought to describe the cuprate superconductors.Comment: Revtex, 4 pages, 3 figures. Some minor changes were made to the text and figures, and some references were adde

    Standardizing Type Ia Supernova Absolute Magnitudes Using Gaussian Process Data Regression

    Full text link
    We present a novel class of models for Type Ia supernova time-evolving spectral energy distributions (SED) and absolute magnitudes: they are each modeled as stochastic functions described by Gaussian processes. The values of the SED and absolute magnitudes are defined through well-defined regression prescriptions, so that data directly inform the models. As a proof of concept, we implement a model for synthetic photometry built from the spectrophotometric time series from the Nearby Supernova Factory. Absolute magnitudes at peak BB brightness are calibrated to 0.13 mag in the gg-band and to as low as 0.09 mag in the z=0.25z=0.25 blueshifted ii-band, where the dispersion includes contributions from measurement uncertainties and peculiar velocities. The methodology can be applied to spectrophotometric time series of supernovae that span a range of redshifts to simultaneously standardize supernovae together with fitting cosmological parameters.Comment: 47 pages, 15 figures, accepted for publication by Astrophysical Journa

    The Low-Energy Fixed Points of Random Quantum Spin Chains

    Full text link
    The one-dimensional isotropic quantum Heisenberg spin systems with random couplings and random spin sizes are investigated using a real-space renormalization group scheme. It is demonstrated that these systems belong to a universality class of disordered spin systems, characterized by weakly coupled large effective spins. In this large-spin phase the uniform magnetic susceptibility diverges as 1/T with a non-universal Curie constant at low temperatures T, while the specific heat vanishes as T^delta |ln T| for T->0. For broad range of initial distributions of couplings and spin sizes the distribution functions approach a single fixed-point form, where delta \approx 0.44. For some singular initial distributions, however, fixed-point distributions have non-universal values of delta, suggesting that there is a line of fixed points.Comment: 19 pages, REVTeX, 13 figure

    C60_{60} in intense femtosecond laser pulses: nonlinear dipole response and ionization

    Full text link
    We study the interaction of strong femtosecond laser pulses with the C60_{60} molecule employing time-dependent density functional theory with the ionic background treated in a jellium approximation. The laser intensities considered are below the threshold of strong fragmentation but too high for perturbative treatments such as linear response. The nonlinear response of the model to excitations by short pulses of frequencies up to 45eV is presented and analyzed with the help of Kohn-Sham orbital resolved dipole spectra. In femtosecond laser pulses of 800nm wavelength ionization is found to occur multiphoton-like rather than via excitation of a ``giant'' resonance.Comment: 14 pages, including 1 table, 5 figure
    • …
    corecore