12 research outputs found

    Experimental and Theoretical Study of Bi2O2Se Under Compression

    Get PDF
    We report a joint experimental and theoretical study of the structural, vibrational, elastic, optical, and electronic properties of the layered high-mobility semiconductor Bi2O2Se at high pressure. A good agreement between experiments and ab initio calculations is observed for the equation of state, the pressure coefficients of the Raman-active modes and the bandgap of the material. In particular, a detailed description of the vibrational properties is provided. Unlike other Sillén-type compounds which undergo a tetragonal to collapsed tetragonal pressure-induced phase transition at relatively low pressures, Bi2O2Se shows a remarkable structural stability up to 30 GPa; however, our results indicate that this compound exhibits considerable electronic changes around 4 GPa, likely related to the progressive shortening and hardening of the long and weak Bi–Se bonds linking the Bi2O2 and Se atomic layers. Variations of the structural, vibrational, and electronic properties induced by these electronic changes are discussed

    Experimental and Theoretical Study of Bi2O2Se Under Compression

    Full text link
    [EN] We report a joint experimental and theoretical study of the structural, vibrational, elastic, optical, and electronic properties of the layered high-mobility semiconductor Bi2O2Se at high pressure. A good agreement between experiments and ab initio calculations is observed for the equation of state, the pressure coefficients of the Raman-active modes and the bandgap of the material. In particular, a detailed description of the vibrational properties is provided. Unlike other Sillen-type compounds which undergo a tetragonal to collapsed tetragonal pressure-induced phase transition at relatively low pressures, Bi2O2Se shows a remarkable structural stability up to 30 GPa; however, our results indicate that this compound exhibits considerable electronic changes around 4 GPa, likely related to the progressive shortening and hardening of the long and weak Bi-Se bonds linking the Bi2O2 and Se atomic layers. Variations of the structural, vibrational, and electronic properties induced by these electronic changes are discussed.This work was supported by Brazilian Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) under project 201050/2012-9, by Spanish MINECO projects MAT2015-71070-REDC, MAT2016-75586-C4-1/2/3-P and CTQ2015-65207-P and by the Grant Agency of the Czech Republic (GA CR) under project 16-07711S. Supercomputer time has been provided by the Red Espanola de Supercomputacion (RES) and the MALTA cluster. D.S.-P. and J.A.S. acknowledge the "Ramon y Cajal" fellowship program (RYC-2015-17482) and Spanish Mineco Projects (2014-15643 and 2017-83295-P). J.R.-F. acknowledge the "Juan de la Cierva" program (IJCI-2014-20513) for financial support.Pereira, A.; Santamaría Pérez, D.; Ruiz Fuertes, J.; Manjón, F.; Cuenca Gotor, VP.; Vilaplana Cerda, RI.; Gomis, O.... (2018). Experimental and Theoretical Study of Bi2O2Se Under Compression. The Journal of Physical Chemistry C. 122(16):8853-8867. https://doi.org/10.1021/acs.jpcc.8b02194S885388671221

    Structural, vibrational and electrical study of compressed BiTeBr

    Full text link
    Compresed BiTeBr has been studied from a joint experimental and theoretical perspective. Room-temperature x-ray diffraction, Raman scattering, and transport measurements at high pressures have been performed in this layered semiconductor and interpreted with the help of ab initio calculations. A reversible first-order phase transition has been observed above 6–7 GPa, but changes in structural, vibrational, and electrical properties have also been noted near 2 GPa. Structural and vibrational changes are likely due to the hardening of interlayer forces rather than to a second-order isostructural phase transition while electrical changes are mainly attributed to changes in the electron mobility. The possibility of a pressure-induced electronic topological transition and of a pressure-induced quantum topological phase transition in BiTeBr and other bismuth tellurohalides, like BiTeI, is also discussed.This work has been performed under financial support from Spanish MINECO under Projects No. MAT2013-46649-C4-2/3-P and MAT2015-71070-REDC. This publication is the outcome of "Programa de Valoracion y Recursos Conjuntos de I+D+i VLC/CAMPUS" and has been financed by the Spanish Ministerio de Educacion, Cultura y Deporte as part of "Programa Campus de Excelencia Internacional" through Projects No. SP20140701 and No. SP20140871. Supercomputer time has been provided by the Red Espanola de Supercomputacion (RES) and the MALTA cluster. J.A.S. acknowledges the "Juan de la Cierva" fellowship program for financial support.Sans-Tresserras, JÁ.; Manjón Herrera, FJ.; Pereira, A.; Vilaplana Cerda, RI.; Gomis, O.; Segura, A.; Muñoz, A.... (2016). Structural, vibrational and electrical study of compressed BiTeBr. Physical review B: Condensed matter and materials physics. 93:024110-1-024110-11. https://doi.org/10.1103/PhysRevB.93.024110S024110-1024110-1193Ishizaka, K., Bahramy, M. S., Murakawa, H., Sakano, M., Shimojima, T., Sonobe, T., … Tokura, Y. (2011). Giant Rashba-type spin splitting in bulk BiTeI. Nature Materials, 10(7), 521-526. doi:10.1038/nmat3051Crepaldi, A., Moreschini, L., Autès, G., Tournier-Colletta, C., Moser, S., Virk, N., … Grioni, M. (2012). Giant Ambipolar Rashba Effect in the Semiconductor BiTeI. Physical Review Letters, 109(9). doi:10.1103/physrevlett.109.096803Landolt, G., Eremeev, S. V., Koroteev, Y. M., Slomski, B., Muff, S., Neupert, T., … Dil, J. H. (2012). Disentanglement of Surface and Bulk Rashba Spin Splittings in Noncentrosymmetric BiTeI. Physical Review Letters, 109(11). doi:10.1103/physrevlett.109.116403Sakano, M., Bahramy, M. S., Katayama, A., Shimojima, T., Murakawa, H., Kaneko, Y., … Ishizaka, K. (2013). Strongly Spin-Orbit Coupled Two-Dimensional Electron Gas Emerging near the Surface of Polar Semiconductors. Physical Review Letters, 110(10). doi:10.1103/physrevlett.110.107204Chen, Y. L., Kanou, M., Liu, Z. K., Zhang, H. J., Sobota, J. A., Leuenberger, D., … Sasagawa, T. (2013). Discovery of a single topological Dirac fermion in the strong inversion asymmetric compound BiTeCl. Nature Physics, 9(11), 704-708. doi:10.1038/nphys2768Xiang, F.-X., Wang, X.-L., Veldhorst, M., Dou, S.-X., & Fuhrer, M. S. (2015). Observation of topological transition of Fermi surface from a spindle torus to a torus in bulk Rashba spin-split BiTeCl. Physical Review B, 92(3). doi:10.1103/physrevb.92.035123Bahramy, M. S., Arita, R., & Nagaosa, N. (2011). Origin of giant bulk Rashba splitting: Application to BiTeI. Physical Review B, 84(4). doi:10.1103/physrevb.84.041202Eremeev, S. V., Nechaev, I. A., & Chulkov, E. V. (2012). Giant Rashba-type spin splitting at polar surfaces of BiTeI. JETP Letters, 96(7), 437-444. doi:10.1134/s0021364012190071Zhu, Z., Cheng, Y., & Schwingenschlögl, U. (2013). Orbital-dependent Rashba coupling in bulk BiTeCl and BiTeI. New Journal of Physics, 15(2), 023010. doi:10.1088/1367-2630/15/2/023010Nayak, C., Simon, S. H., Stern, A., Freedman, M., & Das Sarma, S. (2008). Non-Abelian anyons and topological quantum computation. Reviews of Modern Physics, 80(3), 1083-1159. doi:10.1103/revmodphys.80.1083Alicea, J., Oreg, Y., Refael, G., von Oppen, F., & Fisher, M. P. A. (2011). Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nature Physics, 7(5), 412-417. doi:10.1038/nphys1915Bahramy, M. S., Yang, B.-J., Arita, R., & Nagaosa, N. (2012). Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nature Communications, 3(1). doi:10.1038/ncomms1679Xi, X., Ma, C., Liu, Z., Chen, Z., Ku, W., Berger, H., … Carr, G. L. (2013). Signatures of a Pressure-Induced Topological Quantum Phase Transition in BiTeI. Physical Review Letters, 111(15). doi:10.1103/physrevlett.111.155701Ponosov, Y. S., Kuznetsova, T. V., Tereshchenko, O. E., Kokh, K. A., & Chulkov, E. V. (2014). Dynamics of the BiTeI lattice at high pressures. JETP Letters, 98(9), 557-561. doi:10.1134/s0021364013220074Tran, M. K., Levallois, J., Lerch, P., Teyssier, J., Kuzmenko, A. B., Autès, G., … Akrap, A. (2014). Infrared- and Raman-Spectroscopy Measurements of a Transition in the Crystal Structure and a Closing of the Energy Gap of BiTeI under Pressure. Physical Review Letters, 112(4). doi:10.1103/physrevlett.112.047402Rusinov, I. P., Nechaev, I. A., Eremeev, S. V., Friedrich, C., Blügel, S., & Chulkov, E. V. (2013). Many-body effects on the Rashba-type spin splitting in bulk bismuth tellurohalides. Physical Review B, 87(20). doi:10.1103/physrevb.87.205103Chen, Y., Xi, X., Yim, W.-L., Peng, F., Wang, Y., Wang, H., … Berger, H. (2013). High-Pressure Phase Transitions and Structures of Topological Insulator BiTeI. The Journal of Physical Chemistry C, 117(48), 25677-25683. doi:10.1021/jp409824gD�nges, E. (1951). �ber Chalkogenohalogenide des dreiwertigen Antimons und Wismuts. III. �ber Tellurohalogenide des dreiwertigen Antimons und Wismuts und �ber Antimon-und Wismut(III)-tellurid und Wismut(III)-selenid. Zeitschrift f�r anorganische und allgemeine Chemie, 265(1-3), 56-61. doi:10.1002/zaac.19512650106Shevelkov, A. V., Dikarev, E. V., Shpanchenko, R. V., & Popovkin, B. A. (1995). Crystal Structures of Bismuth Tellurohalides BiTeX (X = Cl, Br, I) from X-Ray Powder Diffraction Data. Journal of Solid State Chemistry, 114(2), 379-384. doi:10.1006/jssc.1995.1058Eremeev, S. V., Rusinov, I. P., Nechaev, I. A., & Chulkov, E. V. (2013). Rashba split surface states in BiTeBr. New Journal of Physics, 15(7), 075015. doi:10.1088/1367-2630/15/7/075015Akrap, A., Teyssier, J., Magrez, A., Bugnon, P., Berger, H., Kuzmenko, A. B., & van der Marel, D. (2014). Optical properties of BiTeBr and BiTeCl. Physical Review B, 90(3). doi:10.1103/physrevb.90.035201Kulbachinskii, V. A., Kytin, V. G., Lavrukhina, Z. V., Kuznetsov, A. N., & Shevelkov, A. V. (2010). Galvanomagnetic and thermoelectric properties of BiTeBr and BiTeI single crystals and their electronic structure. Semiconductors, 44(12), 1548-1553. doi:10.1134/s1063782610120031Kulbachinskii, V. A., Kytin, V. G., Kudryashov, A. A., Kuznetsov, A. N., & Shevelkov, A. V. (2012). On the electronic structure and thermoelectric properties of BiTeBr and BiTeI single crystals and of BiTeI with the addition of BiI3 and CuI. Journal of Solid State Chemistry, 193, 154-160. doi:10.1016/j.jssc.2012.05.037Ma, Y., Dai, Y., Wei, W., Li, X., & Huang, B. (2014). Emergence of electric polarity in BiTeX (X = Br and I) monolayers and the giant Rashba spin splitting. Physical Chemistry Chemical Physics, 16(33), 17603. doi:10.1039/c4cp01975jMatyáš, M., Horák, J., & Klubíčková, B. (1980). Some physical properties of n-type BiTeBr single crystals. Physica Status Solidi (a), 61(2), 419-423. doi:10.1002/pssa.2210610212Fauth, F., Peral, I., Popescu, C., & Knapp, M. (2013). The new Material Science Powder Diffraction beamline at ALBA Synchrotron. Powder Diffraction, 28(S2), S360-S370. doi:10.1017/s0885715613000900Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408Toby, B. H. (2001). EXPGUI, a graphical user interface forGSAS. Journal of Applied Crystallography, 34(2), 210-213. doi:10.1107/s0021889801002242Momma, K., & Izumi, F. (2011). VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272-1276. doi:10.1107/s0021889811038970Dewaele, A., Loubeyre, P., & Mezouar, M. (2004). Equations of state of six metals above94GPa. Physical Review B, 70(9). doi:10.1103/physrevb.70.094112Piermarini, G. J., Block, S., & Barnett, J. D. (1973). Hydrostatic limits in liquids and solids to 100 kbar. Journal of Applied Physics, 44(12), 5377-5382. doi:10.1063/1.1662159Errandonea, D., Meng, Y., Somayazulu, M., & Häusermann, D. (2005). Pressure-induced transition in titanium metal: a systematic study of the effects of uniaxial stress. Physica B: Condensed Matter, 355(1-4), 116-125. doi:10.1016/j.physb.2004.10.030Syassen, K. (2008). Ruby under pressure. High Pressure Research, 28(2), 75-126. doi:10.1080/08957950802235640Errandonea, D., Segura, A., Martínez-García, D., & Muñoz-San Jose, V. (2009). Hall-effect and resistivity measurements in CdTe and ZnTe at high pressure: Electronic structure of impurities in the zinc-blende phase and the semimetallic or metallic character of the high-pressure phases. Physical Review B, 79(12). doi:10.1103/physrevb.79.125203Errandonea, D., Martínez-García, D., Segura, A., Ruiz-Fuertes, J., Lacomba-Perales, R., Fages, V., … Mũnoz-San José, V. (2006). High-pressure electrical transport measurements on p-type GaSe and InSe. High Pressure Research, 26(4), 513-516. doi:10.1080/08957950601101787Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558Kresse, G., & Hafner, J. (1994). Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269. doi:10.1103/physrevb.49.14251Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., & Wondratschek, H. (2003). Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transitions, 76(1-2), 155-170. doi:10.1080/0141159031000076110Pereira, A. L. J., Gracia, L., Santamaría-Pérez, D., Vilaplana, R., Manjón, F. J., Errandonea, D., … Beltrán, A. (2012). Structural and vibrational study of cubic Sb2O3under high pressure. Physical Review B, 85(17). doi:10.1103/physrevb.85.174108Pereira, A. L. J., Sans, J. A., Vilaplana, R., Gomis, O., Manjón, F. J., Rodríguez-Hernández, P., … Beltrán, A. (2014). Isostructural Second-Order Phase Transition of β-Bi2O3 at High Pressures: An Experimental and Theoretical Study. The Journal of Physical Chemistry C, 118(40), 23189-23201. doi:10.1021/jp507826jVilaplana, R., Gomis, O., Manjón, F. J., Segura, A., Pérez-González, E., Rodríguez-Hernández, P., … Kucek, V. (2011). High-pressure vibrational and optical study of Bi2Te3. Physical Review B, 84(10). doi:10.1103/physrevb.84.104112Gomis, O., Vilaplana, R., Manjón, F. J., Rodríguez-Hernández, P., Pérez-González, E., Muñoz, A., … Drasar, C. (2011). Lattice dynamics of Sb2Te3at high pressures. Physical Review B, 84(17). doi:10.1103/physrevb.84.174305Vilaplana, R., Santamaría-Pérez, D., Gomis, O., Manjón, F. J., González, J., Segura, A., … Kucek, V. (2011). Structural and vibrational study of Bi2Se3under high pressure. Physical Review B, 84(18). doi:10.1103/physrevb.84.184110Moreschini, L., Autès, G., Crepaldi, A., Moser, S., Johannsen, J. C., Kim, K. S., … Grioni, M. (2015). Bulk and surface band structure of the new family of semiconductors BiTeX (X=I, Br, Cl). Journal of Electron Spectroscopy and Related Phenomena, 201, 115-120. doi:10.1016/j.elspec.2014.11.004VanGennep, D., Maiti, S., Graf, D., Tozer, S. W., Martin, C., Berger, H., … Hamlin, J. J. (2014). Pressure tuning the Fermi level through the Dirac point of giant Rashba semiconductor BiTeI. Journal of Physics: Condensed Matter, 26(34), 342202. doi:10.1088/0953-8984/26/34/342202Ideue, T., Checkelsky, J. G., Bahramy, M. S., Murakawa, H., Kaneko, Y., Nagaosa, N., & Tokura, Y. (2014). Pressure variation of Rashba spin splitting toward topological transition in the polar semiconductor BiTeI. Physical Review B, 90(16). doi:10.1103/physrevb.90.161107Wu, L., Yang, J., Wang, S., Wei, P., Yang, J., Zhang, W., & Chen, L. (2014). Two-dimensional thermoelectrics with Rashba spin-split bands in bulk BiTeI. Physical Review B, 90(19). doi:10.1103/physrevb.90.195210Errandonea, D., Segura, A., Manjón, F. J., Chevy, A., Machado, E., Tobias, G., … Canadell, E. (2005). Crystal symmetry and pressure effects on the valence band structure ofγ-InSe andε-GaSe: Transport measurements and electronic structure calculations. Physical Review B, 71(12). doi:10.1103/physrevb.71.12520

    Experimental and Theoretical Study of Bi<sub>2</sub>O<sub>2</sub>Se Under Compression

    No full text
    We report a joint experimental and theoretical study of the structural, vibrational, elastic, optical, and electronic properties of the layered high-mobility semiconductor Bi<sub>2</sub>O<sub>2</sub>Se at high pressure. A good agreement between experiments and <i>ab initio</i> calculations is observed for the equation of state, the pressure coefficients of the Raman-active modes and the bandgap of the material. In particular, a detailed description of the vibrational properties is provided. Unlike other Sillén-type compounds which undergo a tetragonal to collapsed tetragonal pressure-induced phase transition at relatively low pressures, Bi<sub>2</sub>O<sub>2</sub>Se shows a remarkable structural stability up to 30 GPa; however, our results indicate that this compound exhibits considerable electronic changes around 4 GPa, likely related to the progressive shortening and hardening of the long and weak Bi–Se bonds linking the Bi<sub>2</sub>O<sub>2</sub> and Se atomic layers. Variations of the structural, vibrational, and electronic properties induced by these electronic changes are discussed
    corecore