35 research outputs found

    Effect of Isolated and Combined Practice of Yoga Therapy and Ayurveda on Distant Vision among Myopia

    Get PDF
    Myopia or shortsightedness is the most common refractive error of the eye. A recent study conducted at National Eye Institute shows the prevalence of myopia from 25% in 1971 to a whooping 41.6% in 1999 -2004. Present study was done to analyse the efficacy of Yoga Therapy and Ayurvedic Medicine on distant vision among myopics. 30 subjects were randomly selected for the study from SHES Ayurvedic Medical College OPD, Kalaburagi. 30 subjects were grouped in 3 experimental groups. First group were administered Ayurvedic medicines, second group was selected for Yoga therapy, and third group was advised Yogasana and Ayurvedic therapy. First group was given Triphala Ghrita and Pratimarsha Nasya with Abhijeeta Taila for a period of 8 weeks. Second group was selected for Trataka for a period of 8 weeks. Training was given for 6 days in a week, 15 minutes per day. Third group received combined Ayurveda and Yoga therapy. Snellen’s chart was the scale used to record the distant vision before and after the treatment. Good Response was seen in Group C (Yoga + Ayurveda) as compared to Group A (Ayurveda) and Group B (Yoga)

    Studies on the growth and flowering of a short-day plant, Wolffia microscopica

    Get PDF
    As found earlier, supply of EDTA was obligatory for both flowering and satisfactory vegetative growth in Wolffia microscopica. It is now shown that the metal affecting growth and flowering is most probably iron. Omission of Fe but not of Cu, Zn, Mn and B from the medium markedly affects vegetative growth. There exists also a strong interaction between EDTA and Fe, one being largely inactive in the absence of the other. When Fe-EDDHA is substituted for Fe-citrate and EDTA in the medium, no great effect is seen in vegetative growth, but flowering takes place even under continuous light. Studies with 59Fe show that, in the medium containing Fe-EDDHA, Fe uptake is stimulated several-fold; this is apparently associated with the flowering condition

    Changes in biochemical constituents and antioxidant enzyme activity in groundnut (Arachis hypogaea L.) by the addition of coated multi-nutrient fertilization in calcareous soil

    Get PDF
    Sulphur and micronutrients play a vital in the growth and development of plants due to their catalytic effect on many metabolic processes. A field experiment was conducted to explore the changes in various biochemical constituents and antioxidants enzyme activities in response to coated multi-nutrient fertilization. The experiment consisted of five organic acids (citric acid, humic acid, fulvic acid, salicylic acid) and amino acid (glycine) coated multi-nutrient fertilizer sources applied at five different levels (0, 5, 10, 12.5 and 15 kg ha-1). Groundnut leaf samples were collected and analyzed for biochemical constituents such as proline, soluble protein and antioxidant enzymes viz., superoxide dismutase, catalase, peroxidase and carbonic anhydrase activities at harvest stages. The results revealed that, application of fulvic acid coated multi-nutrient fertilizer at 15 kg ha-1 registered lesser proline (5.93 µmoles g-1) and higher soluble protein (22.2 mg g-1) content, superoxide dismutase (8.93 EU mg-1), catalase (18.2 µg H2O2 min-1 g˗1), peroxidase (6.11 µg min-1 mg˗1) and carbonic anhydrase (14.8 EU mg-1) activities at harvest stage followed by 12.5 kg humic acid coated multi-nutrient fertilizer. The lesser response was noted with NPK control in influencing the biochemical constituents and antioxidant enzymes. It was concluded that fulvic coated multi-nutrient fertilizer at 15 kg ha-1 was the better source for improving the biochemical constituents and antioxidant enzymes of groundnut in calcareous soils

    Optimal Dispatch Strategy of Virtual Power Plant for Day-Ahead Market Framework

    Get PDF
    Renewable energy sources prevail as a clean energy source and their penetration in the power sector is increasing day by day due to the growing concern for climate action. However, the intermittent nature of the renewable energy based-power generation questions the grid security, especially when the utilized source is solar radiation or wind flow. The intermittency of the renewable generation can be met by the integration of distributed energy resources. The virtual power plant (VPP) is a new concept which aggregates the capacities of various distributed energy resources, handles controllable and uncontrollable loads, integrates storage devices and empowers participation as an individual power plant in the electricity market. The VPP as an energy management system (EMS) should optimally dispatch the power to its consumers. This research work is proposed to analyze the optimal scheduling of generation in VPP for the day-ahead market framework using the beetle antenna search (BAS) algorithm under various scenarios. A case study is considered for this analysis in which the constituting energy resources include a photovoltaic solar panel (PV), micro-turbine (MT), wind turbine (WT), fuel cell (FC), battery energy storage system (BESS) and controllable loads. The real-time hourly load curves are considered in this work. Three different scenarios are considered for the optimal dispatch of generation in the VPP to analyze the performance of the proposed technique. The uncertainties of the solar irradiation and the wind speed are modeled using the beta distribution method and Weibull distribution method, respectively. The performance of the proposed method is compared with other evolutionary algorithms such as particle swarm optimization (PSO) and the genetic algorithm (GA). Among these above-mentioned algorithms, the proposed BAS algorithm shows the best scheduling with the minimum operating cost of generation

    In-situ development of self-defensive antibacterial biomaterials: phenol-g-keratin-EC based bio-composites with characteristics for biomedical applications

    Get PDF
    Recently, the development of highly inspired biomaterials with multi-functional characteristics has gained considerable attention, especially in biomedical, and other health-related areas of the modern world. It is well-known that the lack of antibacterial potential has significantly limited biomaterials for many challenging applications such as infection free wound healing and/or tissue engineering etc. In this perspective, herein, a series of novel bio-composites with natural phenols as functional entities and keratin-EC as a base material were synthesised by laccase-assisted grafting. Subsequently, the resulting composites were removed from their respective casting surfaces, critically evaluated for their antibacterial and biocompatibility features and information is also given on their soil burial degradation profile. In-situ synthesised phenol-g-keratin-EC bio-composites possess strong anti-bacterial activity against Gram-positive and Gram-negative bacterial strains i.e., B. subtilis NCTC 3610, P. aeruginosa NCTC 10662, E. coli NTCT 10418 and S. aureus NCTC 6571. More specifically, 10HBA-g-keratin-EC and 20T-g-keratin-EC composites were 100% resistant to colonisation against all of the aforementioned bacterial strains, whereas, 15CA-g-keratin-EC and 15GA-g-keratin-EC showed almost negligible colonisation up to a variable extent. Moreover, at various phenolic concentrations used, the newly synthesised composites remained cytocompatible with human keratinocyte-like HaCaT, as an obvious cell ingrowth tendency was observed and indicated by the neutral red dye uptake assay. From the degradation point of view, an increase in the degradation rate was recorded during their soil burial analyses. Our investigations could encourage greater utilisation of natural materials to develop bio-composites with novel and sophisticated characteristics for potential applications

    A Unique Approach to 3D Localization in Wireless Sensor Network by Using Adaptive Stochastic Control Algorithm

    No full text
    In the modern era, wireless sensor network has turned into a critical innovation for various sorts of the clever algorithms, where nodes localization was complicated in research territory. A significant number of the advantages for wireless sensor networks are not profitable without a priory is known. Including Global Positioning System to every node is an exclusive plan and unsuitable for the indoor condition. Localization is a critical piece for wireless sensor networks innovation while current localization approaches, for the most part 2D plane has been concentrated, the rising 3D localization conveys WSNs nearer to improved exactness, and the 3D area innovation is more fitting for genuine applications. In any case, existing 3D localization has weaknesses, for example, high time complexity, low positioning exactness, and awesome energy utilization. Going for the current issues in present 3D localization methods, enhanced 3D localization technique based on adaptive stochastic control is proposed. Simulation results show that the average area precision of adaptive stochastic localization algorithm is vastly improved than established 3D DV-hop algorithm and centroid algorithm. Besides, the stability of the proposed method is superior to others. Anchor node system and propagation sample determination is used to simulate the spread of accuracy by 78.9% compared with 3D DV-HOP and 92.7% compared with the 3D centroid

    Synthesis, characterization and optical properties of hybrid PVA-ZnO nanocomposite: A composition dependent study

    No full text
    Nanocomposites of poly vinyl alcohol (PVA) and ZnO have been synthesized using the solution casting technique for different concentrations of nano ZnO powder prepared by low temperature solution combustion method. The formation of polymer nanocomposite and changes in the structural and micro structural properties of the materials were investigated by X-ray diffraction, Energy dispersive X ray spectroscopy and optical microscopy techniques (FTIR and UV-Visible). The surface morphology of PVA-ZnO nanocomposite films were elucidated using Scanning Electron Microscopy. The optical absorption spectrum of nano ZnO shows blue shift in the optical band gap energy with respect to characteristic bulk ZnO at room temperature, whereas PVA-ZnO hybrid films show red shift with respect to nano ZnO. The photoluminescence studies show that the intensity of the blue emission (470 nm) varies with change in concentration of ZnO with an optimum intensity observed at 10 mol of ZnO. © 2014 Elsevier Ltd

    Colorimetric Determination of Cobalt in Alloys Based on Iron, Nickel & Cobalt

    Get PDF
    727-72
    corecore