318 research outputs found

    LBT and Spitzer Spectroscopy of Star-Forming Galaxies at 1 < z < 3: Extinction and Star Formation Rate Indicators

    Get PDF
    We present spectroscopic observations in the rest-frame optical and near- to mid-infrared wavelengths of four gravitationally lensed infrared (IR) luminous star-forming galaxies at redshift 1 < z < 3 from the LUCIFER instrument on the Large Binocular Telescope and the Infrared Spectrograph on Spitzer. The sample was selected to represent pure, actively star-forming systems, absent of active galactic nuclei. The large lensing magnifications result in high signal-to-noise spectra that can probe faint IR recombination lines, including Pa-alpha and Br-alpha at high redshifts. The sample was augmented by three lensed galaxies with similar suites of unpublished data and observations from the literature, resulting in the final sample of seven galaxies. We use the IR recombination lines in conjunction with H-alpha observations to probe the extinction, Av, of these systems, as well as testing star formation rate (SFR) indicators against the SFR measured by fitting spectral energy distributions to far-IR photometry. Our galaxies occupy a range of Av from ~0 to 5.9 mag, larger than previously known for a similar range of IR luminosities at these redshifts. Thus, estimates of SFR even at z ~ 2 must take careful count of extinction in the most IR luminous galaxies. We also measure extinction by comparing SFR estimates from optical emission lines with those from far-IR measurements. The comparison of results from these two independent methods indicates a large variety of dust distribution scenarios at 1 < z < 3. Without correcting for dust extinction, the H-alpha SFR indicator underestimates the SFR; the size of the necessary correction depends on the IR luminosity and dust distribution scenario. Individual SFR estimates based on the 6.2 micron PAH emission line luminosity do not show a systematic discrepancy with extinction, although a considerable, ~0.2 dex scatter is observed.Comment: Accepted for publication in The Astrophysical Journal; 14 pages, 8 figure

    Completing the Census of AGN in GOODS-S/HUDF: New Ultra-Deep Radio Imaging and Predictions for JWST

    Full text link
    A global understanding of Active Galactic Nuclei (AGN) and their host galaxies hinges on completing a census of AGN activity without selection biases down to the low-luminosity regime. Toward that goal, we identify AGN within faint radio populations at cosmic noon selected from new ultra-deep, high resolution imaging from the Karl G. Jansky Very Large Array at 6 and 3 GHz. These radio data are spatially coincident with the ultra-deep legacy surveys in the GOODS-S/HUDF region, particularly the unparalleled Chandra 7 Ms X-ray imaging. Combined, these datasets provide a unique basis for a thorough census of AGN, allowing simultaneous identification via (1) high X-ray luminosity; (2) hard X-ray spectra; (3) excess X-ray relative to 6 GHz; (4) mid-IR colors; (5) SED fitting; (6) radio excess via the radio-infrared relation; (7) flat radio spectra via multi-band radio; and (8) optical spectroscopy. We uncover AGN in fully half our faint radio sample, indicating a source density of one AGN arcmin2^{-2}, with a similar number of radio-undetected AGN identified via X-ray over the same area. Our radio-detected AGN are majority radio-quiet, with radio emission consistent with being powered predominantly by star formation. Nevertheless, we find AGN radio signatures in our sample: 12%\sim12\% with radio excess indicating radio-loud activity and 16%\sim16\% of radio-quiet AGN candidates with flat or inverted radio spectra. The latter is a lower limit, pending our upcoming deeper 3 GHz survey. Finally, despite these extensive datasets, this work is likely still missing heavily obscured AGN. We discuss in detail this elusive population and the prospects for completing our AGN census with JWST/MIRI.Comment: Accepted for publication in ApJ. 30 pages, 13 figures, 2 tables, 2 appendices. Minor update to fix typos and better match published versio

    Transit timing variation and transmission spectroscopy analyses of the hot Neptune GJ3470b

    Get PDF
    GJ3470b is a hot Neptune exoplanet orbiting an M dwarf and the first sub-Jovian planet to exhibit Rayleigh scattering. We present transit timing variation (TTV) and transmission spectroscopy analyses of multi-wavelength optical photometry from 2.4-m and 0.5-m telescopes at the Thai National Observatory, and the 0.6-m PROMPT-8 telescope in Chile. Our TTV analysis allows us to place an upper mass limit for a second planet in the system. The presence of a hot Jupiter with a period of less than 10 days or a planet with an orbital period between 2.5 and 4.0 days are excluded. Combined optical and near-infrared transmission spectroscopy favour an H/He dominated haze (mean molecular weight 1.08±\pm0.20) with high particle abundance at high altitude. We also argue that previous near-infrared data favour the presence of methane in the atmosphere of GJ3470b

    The Anticipated Supernova Associated with GRB090618

    Full text link
    We use the cannonball model of gamma ray bursts (GRBs) and public data from the first day of observations of GRB 090618 to predict its X-ray and optical lightcurves until very late times, and, in particular, the emergence of a photometric and spectroscopic signature of an SN akin to SN1998bw in its optical afterglow with an anticipated peak brightness of magnitude 23 in the R band around July 10, 2009, if extinction in the host galaxy can be neglected.Comment: 10 pages, 2 Figure

    Planetary Collisions outside the Solar System: Time Domain Characterization of Extreme Debris Disks

    Get PDF
    Luminous debris disks of warm dust in the terrestrial planet zones around solar-like stars are recently found to vary, indicative of ongoing large-scale collisions of rocky objects. We use Spitzer 3.6 and 4.5 {\mu}m time-series observations in 2012 and 2013 (extended to 2014 in one case) to monitor 5 more debris disks with unusually high fractional luminosities ("extreme debris disk"), including P1121 in the open cluster M47 (80 Myr), HD 15407A in the AB Dor moving group (80 Myr), HD 23514 in the Pleiades (120 Myr), HD 145263 in the Upper Sco Association (10 Myr), and the field star BD+20 307 (>1 Gyr). Together with the published results for ID8 in NGC 2547 (35 Myr), this makes the first systematic time-domain investigation of planetary impacts outside the solar system. Significant variations with timescales shorter than a year are detected in five out of the six extreme debris disks we have monitored. However, different systems show diverse sets of characteristics in the time domain, including long-term decay or growth, disk temperature variations, and possible periodicity.Comment: 50 pages, 14 figures, 9 tables; Accepted for publication in the Astrophysical Journa

    Reconstructing the \gamma-ray Photon Optical Depth of the Universe to z~4 from Multiwavelength Galaxy Survey Data

    Get PDF
    We reconstruct \gamma-ray opacity of the Universe out to z<3-4 using an extensive library of 342 observed galaxy luminosity function surveys extending to high redshifts. We cover the whole range from UV to mid-IR (0.15-25mic) providing for the first time a robust empirical calculation of the \gamma\gamma-optical depth out to several TeV. Here, we use the same database as Helgason et al. 2012 where the EBL was reconstructed from luminosity functions out to 4.5mic and was shown to recover observed galaxy counts to high accuracy. We extend our earlier library of LFs to 25mic such that it covers the energy range of pair production with \gamma-rays 1) in the entire Fermi/LAT energy range, and 2) at higher TeV energies probed by ground-based Cherenkov telescopes. In the absence of significant contributions to the cosmic diffuse background from unknown populations, such as the putative Population III era sources, the Universe appears to be largely transparent to \gamma-rays at all Fermi/LAT energies out to z~2 whereas becoming opaque to TeV photons already at z<0.2 and reaching \tau~10 at z=1. Comparing with the currently available Fermi/LAT GRB and blazar data shows that there is room for significant emissions originating in the first stars era.Comment: 5 pages, 5 figures. Published in ApJ Letter

    Spatially resolved kinematics in the central 1 kpc of a compact star-forming galaxy at z=2.3 from ALMA CO observations

    Get PDF
    We present high spatial resolution (FWHM\sim0.14'') observations of the CO(878-7) line in GDS-14876, a compact star-forming galaxy at z=2.3z=2.3 with total stellar mass of log(M/M)=10.9\log(M_{\star}/M_{\odot})=10.9. The spatially resolved velocity map of the inner r1r\lesssim1~kpc reveals a continous velocity gradient consistent with the kinematics of a rotating disk with vrot(r=1kpc)=163±5v_{\rm rot}(r=1\rm kpc)=163\pm5 km s1^{-1} and vrot/σ2.5v_{\rm rot}/\sigma\sim2.5. The gas-to-stellar ratios estimated from CO(878-7) and the dust continuum emission span a broad range, fgasCO=Mgas/M=1345%f^{\rm CO}_{\rm gas}=M_{\rm gas}/M_{\star}=13-45\% and fgascont=5067%f^{\rm cont}_{\rm gas}=50-67\%, but are nonetheless consistent given the uncertainties in the conversion factors. The dynamical modeling yields a dynamical mass oflog(Mdyn/M)=10.580.2+0.5\log(M_{\rm dyn}/M_{\odot})=10.58^{+0.5}_{-0.2} which is lower, but still consistent with the baryonic mass, log\log(Mbar_{\rm bar}= M_{\star} + MgasCO^{\rm CO}_{\rm gas}/M_{\odot})=11.0=11.0, if the smallest CO-based gas fraction is assumed. Despite a low, overall gas fraction, the small physical extent of the dense, star-forming gas probed by CO(878-7), 3×\sim3\times smaller than the stellar size, implies a strong concentration that increases the gas fraction up to fgasCO,1kpc85%f^{\rm CO, 1\rm kpc}_{\rm gas}\sim 85\% in the central 1 kpc. Such a gas-rich center, coupled with a high star-formation rate, SFR\sim 500 M_{\odot} yr1^{-1}, suggests that GDS-14876 is quickly assembling a dense stellar component (bulge) in a strong nuclear starburst. Assuming its gas reservoir is depleted without replenishment, GDS-14876 will quickly (tdepl27t_{\rm depl}\sim27 Myr) become a compact quiescent galaxy that could retain some fraction of the observed rotational support.Comment: Accepted for Publication in ApJL. Kinematic maps are shown in Figures 2 and

    High-Velocity Outflows Without AGN Feedback: Eddington-Limited Star Formation in Compact Massive Galaxies

    Full text link
    We present the discovery of compact, obscured star formation in galaxies at z ~ 0.6 that exhibit >1000 km/s outflows. Using optical morphologies from the Hubble Space Telescope and infrared photometry from the Wide-field Infrared Survey Explorer, we estimate star formation rate (SFR) surface densities that approach Sigma_SFR ~ 3000 Msun/yr/kpc^2, comparable to the Eddington limit from radiation pressure on dust grains. We argue that feedback associated with a compact starburst in the form of radiation pressure from massive stars and ram pressure from supernovae and stellar winds is sufficient to produce the high-velocity outflows we observe, without the need to invoke feedback from an active galactic nucleus.Comment: 6 pages, 4 figures, accepted for publication in ApJ Letter
    corecore