48 research outputs found

    Divergent occurrences of juvenile and adult trees are explained by both environmental change and ontogenetic effects

    Get PDF
    Recent climate warming has fueled interest into climate-driven range shifts of tree species. A common approach to detect range shifts is to compare the divergent occurrences between juvenile and adult trees along environmental gradients using static data. Divergent occurrences between life stages can, however, also be caused by ontogenetic effects. These include shifts of the viable environmental conditions throughout development (?ontogenetic niche shift') as well as demographic dependencies that constrain the possible occurrence of subsequent life stages. Whether ontogenetic effects are an important driver of divergent occurrences between juvenile and adult trees along large-scale climatic gradients is largely unknown. It is, however, critical in evaluating whether impacts of environmental change can be inferred from static data on life stage occurrences. Here, we first show theoretically, using a two-life stage simulation model, how both temporal range shift and ontogenetic effects can lead to similar divergent occurrences between adults and juveniles (juvenile divergence). We further demonstrate that juvenile divergence can unambiguously be attributed to ontogenetic effects, when juveniles diverge from adults in opposite direction to their temporal shift along the environmental gradient. Second, to empirically test whether ontogenetic effects are an important driver of divergent occurrences across Europe, we use repeated national forest inventories from Sweden, Germany and Spain to assess juvenile divergence and temporal shift for 40 tree species along large-scale climatic gradients. About half of the species-country combinations had significant juvenile divergences along heat sum and water availability gradients. Only a quarter of the tree species had significant detectable temporal shifts within the observation period. Furthermore, significant juvenile divergences were frequently associated with opposite temporal shifts, indicating that ontogenetic effects are a relevant cause of divergent occurrences between life stages. Our study furthers the understanding of ontogenetic effects and challenges the practice of inferring climate change impacts from static data.Universidad de AlcaláMinisterio de Ciencia e InnovaciónAgencia Estatal de Investigació

    Functional and regulatory profiling of energy metabolism in fission yeast

    Get PDF
    Background: The control of energy metabolism is fundamental for cell growth and function and anomalies in it are implicated in complex diseases and ageing. Metabolism in yeast cells can be manipulated by supplying different carbon sources: yeast grown on glucose rapidly proliferates by fermentation, analogous to tumour cells growing by aerobic glycolysis, whereas on non-fermentable carbon sources metabolism shifts towards respiration. Results: We screened deletion libraries of fission yeast to identify over 200 genes required for respiratory growth. Growth media and auxotrophic mutants strongly influenced respiratory metabolism. Most genes uncovered in the mutant screens have not been implicated in respiration in budding yeast. We applied gene-expression profiling approaches to compare steady-state fermentative and respiratory growth and to analyse the dynamic adaptation to respiratory growth. The transcript levels of most genes functioning in energy metabolism pathways are coherently tuned, reflecting anticipated differences in metabolic flows between fermenting and respiring cells. We show that acetyl-CoA synthase, rather than citrate lyase, is essential for acetyl-CoA synthesis in fission yeast. We also investigated the transcriptional response to mitochondrial damage by genetic or chemical perturbations, defining a retrograde response that involves the concerted regulation of distinct groups of nuclear genes that may avert harm from mitochondrial malfunction. Conclusions: This study provides a rich framework of the genetic and regulatory basis of energy metabolism in fission yeast and beyond, and it pinpoints weaknesses of commonly used auxotroph mutants for investigating metabolism. As a model for cellular energy regulation, fission yeast provides an attractive and complementary system to budding yeast

    Leptin reduces in vitro cementoblast mineralization and survival as well as induces PGE2 release by ERK1/2 commitment

    No full text
    Objectives!#!Juvenile obesity is a complex clinical condition that is present more and more frequently in the daily orthodontic practice. Over-weighted patients have an impaired bone metabolism, due in part to their increased levels of circulating adipokines. Particularly, leptin has been reported to play a key role in bone physiology. Leptin is ubiquitously present in the body, including blood, saliva, and crevicular fluid. If, and to what extent, it could influence the reaction of cementoblasts during orthodontic-induced forces is yet unknown.!##!Material and methods!#!OCCM-30 cementoblasts were cultivated under compressive forces using different concentrations of leptin. The expression of ObR, Runx-2, Osteocalcin, Rank-L, Sost, Caspase 3, 8, and 9 were analyzed by RT-PCR. Western blots were employed for protein analysis. The ERK1/2 antagonist FR180204 (Calbiochem) was used and cPLA2 activation, PGE2, and cytochrome C release were further evaluated.!##!Results!#!In vitro, when compressive forces are applied, leptin promotes ERK1/2 phosphorylation, as well as upregulates PGE2 and caspase 3 and caspase 9 on OCCM cells. Blockade of ERK1/2 impairs leptin-induced PGE2 secretion and reduced caspase 3 and caspase 9 expression.!##!Conclusions!#!Leptin influences the physiological effect of compressive forces on cementoblasts, exerting in vitro a pro-inflammatory and pro-apoptotic effect.!##!Clinical relevance!#!Our findings indicate that leptin exacerbates the physiological effect of compressive forces on cementoblasts promoting the release of PGE2 and increases the rate of cell apoptosis, and thus, increased levels of leptin may influence the inflammatory response during orthodontically induced tooth movement

    Fc-gamma receptors are not involved in cartilage damage during experimental osteoarthritis

    Get PDF
    Fc-gamma receptors (FcγRs) have been shown to play a crucial role in cartilage degradation during experimental arthritis. Although most of their effect on cartilage degradation has been attributed to their potential to promote inflammation in the presence of immunoglobulins, activating FcγRs promote cartilage degeneration in antigen-induced arthritis (AIA) independently of the level of inflammation. This prompted us to investigate, whether FcγRs may also play a role in osteoarthritis (OA)-related cartilage degradation

    Blockade of the hedgehog pathway inhibits osteophyte formation in arthritis

    No full text
    Background: Osteophyte formation is a common phenomenon in arthritis. Bone formation by endochondral ossification is considered a key pathophysiological process in the formation of osteophytes. Objective: To examine the hypothesis that inhibition of smoothened (Smo), a key component of the hedgehog pathway inhibits osteophyte formation as the hedgehog pathway mediates endochondral ossification. Methods: Arthritis was induced in 8-week-old C57/BL6 mice by serum transfer (K/BxN model). Mice were then treated by daily administration of either vehicle or LDE223, a specific small molecule inhibitor for Smo, over 2 weeks starting at the onset of disease. Clinical course of arthritis, histological and molecular changes of bone in the affected joints as well as systemic bone changes were assessed. Results: Serum transfer-induced arthritis led to severe osteophyte formation within 2 weeks of onset. Blockade of Smo inhibited hedgehog signalling in vivo and also significantly inhibited osteophyte formation, whereas the clinical and histopathological signs of arthritis were not affected. Also, systemic bone mass did not change. Smo inhibitor particularly blocked the formation of hypertrophic chondrocytes and collagen type X expression. Conclusions: The data indicate that blockade of hedgehog signalling by targeting Smo specifically inhibits osteophyte formation in arthritis without affecting inflammation and without eliciting bone destruction at the local and systemic level. Blockade of Smo may thus be considered as a strategy to specifically influence the periosteal bone response in arthritis associated with bone apposition

    Deletion of the receptor tyrosine kinase Tyro3 inhibits synovial hyperplasia and bone damage in arthritis

    No full text
    Objective: To test whether the tyrosine kinase Tyro3 affects arthritis. Tyro3, the ligand of growth arrest–specific protein 6 (GAS6) is a receptor tyrosine kinase involved in cell survival. Tyro3 and GAS6 are expressed in the arthritic synovium, and in vitro studies have shown their role in osteoclast differentiation. Methods: Bone was assessed by micro CT and histomorphometry in Tyro3-deficient (Tyro3−/−) and wild-type mice. Arthritis was induced in both genotypes, and Gas6 level was measured by ELISA. Synovitis, synovial hyperplasia, bone erosion, osteoclast activation and osteoclast gene expression were assessed by histomorphometry and reverse transcriptase–PCR, respectively. In vitro osteoclast differentiation assays were performed in Tyro3−/− and wild-type mice. Furthermore, effects of Tyro3 and GAS6 on human synovial fibroblast proliferation and osteoclastogenesis were assessed in human cells. Results: Tyro3−/− mice had significantly higher bone mass than wild-type littermates. Induction of arthritis increased GAS6 serum levels. Arthritic Tyro3−/− mice showed less synovial hyperplasia, osteoclast numbers and bone damage compared with controls. In vivo expression of osteoclast-associated receptor and receptor activator of nuclear factor-κB and in vitro osteoclastogenesis were impaired in Tyro3−/− mice. GAS6 also induced synovial fibroblast proliferation and osteoclast differentiation in human cells in Tyro3-dependent manner. Conclusions: These findings indicate that Tyro3 is a critical signal for synovial hyperplasia, osteoclast differentiation and bone erosion during arthritis. GAS6 and Tyro3 therefore constitute therapeutic targets to inhibit synovial hyperplasia and associated bone erosion
    corecore