150 research outputs found

    Neural Network Based Min-Max Predictive Control. Application to a Heat Exchanger

    Get PDF
    IFAC Adaptation and Learning in Control and Signal Processing. Cemobbio-Como. Italy. 2001Min-max model predictive controllers (MMMPC) have been proposed for the control of linear plants subject to bounded uncertainties. The implementation of MMMPC suffers a large computational burden due to the numerical optimization problem that has to be solved at every sampling time. This fact severely limits the class of processes in which this control is suitable. In this paper the use of a Neural Network (NN) to approximate the solution of the min-max problem is proposed. The number of inputs of the NN is determined by the order and time delay of the model together with the control horizon. For large time delays the number of inputs can be prohibitive. A modification to the basic formulation is proposed in order to avoid this later problem. Simulation and experimental results are given using a heat exchanger

    Modelling Free Response of a Solar Plant for Predictive Control

    Get PDF
    IFAC System Identification, Kitakyushu, Fukuoka,Japan,1997This paper deals with the identification of a nonlinear plant by means of a neural network (NN) modelling approximation. The problem of neural identification is tackled using a static NN in a NARX configuration. A method is proposed to obtain the number of past values needed to feed the network. The on-line adaptation of the model and other issues are discussed. In order to show the benefits that can be achieved with the proposed methods, the NN model is used within a Model Predictive Control (MPC) framework. The MPC scheme uses the prediction of the output of the system calculated as the sum of the free response (obtained using the nonlinear NN model) and the forced response (obtained linearizing around the current operating point) to optimize a performance index. The control scheme has been applied and tested in a solar power plant

    Feedback control ideas for call center staffing

    Get PDF
    European Control Conference 2009 • Budapest, Hungary, August 23–26, 2009Call centers are nowadays a widespread solution to deal with customer support and as platform for different kind of business. Call center staffing is crucial to provide adequate service levels at acceptable costs. The task is usually accomplished using heuristics with the help of a human experts or with some static offline optimization based on operations research. Simulators based on queue theory are in some cases also used. The aim of the paper is to show that call center staffing can be posed as a feedback control problem with the advantage of getting a higher level of automation, and a wealth of results from control theory that can help to obtain the best possible staffing. In the paper the authors briefly describe the working procedures of call centers and how the staffing is usually made. They propose a feedback controller that it is used with a call center simulator. The results show that good call center staffing can be obtained even with a not very sophisticated controller

    Input variable selection for forecasting models

    Get PDF
    2002 IFAC15th Triennial World Congress, Barcelona, SpainThe selection of input variables plays a crucial role when modelling time series. For nonlinear models there are not well developed techniques such as AIC and other criteria that work with linear models. In the case of Short Term Load Forecasting (STLF) generalization is greatly influenced by such selection. In this paper two approaches are compared using real data from a Spanish utility company. The models used are neural networks although the algorithms can be used with other nonlinear models. The experiments show that that input variable selection affects the performance of forecasting models and thus should be treated as a generalization problem

    Evaluation of piezodiagnostics approach for leaks detection in a pipe loop

    Get PDF
    Pipe leaks detection has a great economic, environmental and safety impact. Although several methods have been developed to solve the leak detection problem, some drawbacks such as continuous monitoring and robustness should be addressed yet. Thus, this paper presents the main results of using a leaks detection and classification methodology, which takes advantage of piezodiagnostics principle. It consists of: i) transmitting/sensing guided waves along the pipe surface by means of piezoelectric device ii) representing statistically the cross-correlated piezoelectric measurements by using Principal Component Analysis iii) identifying leaks by using error indexes computed from a statistical baseline model and iv) verifying the performance of the methodology by using a Self Organizing Map as visualization tool and considering different leak scenario. In this sense, the methodology was experimentally evaluated in a carbon-steel pipe loop under different leaks scenarios, with several sizes and locations. In addition, the sensitivity of the methodology to temperature, humidity and pressure variations was experimentally validated. Therefore, the effectiveness of the methodology to detect and classify pipe leaks, under varying environmental and operational conditions, was demonstrated. As a result, the combination of piezodiagnostics approach, cross-correlation analysis, principal component analysis, and Self Organizing Maps, become as promising solution in the field of structural health monitoring and specifically to achieve robust solution for pipe leak detection.Peer ReviewedPostprint (author's final draft

    PCA based stress monitoring of cylindrical specimens using PZTs and guidedwaves

    Get PDF
    Since mechanical stress in structures affects issues such as strength, expected operational life and dimensional stability, a continuous stress monitoring scheme is necessary for a complete integrity assessment. Consequently, this paper proposes a stress monitoring scheme for cylindrical specimens, which are widely used in structures such as pipelines, wind turbines or bridges. The approach consists of tracking guided wave variations due to load changes, by comparing wave statistical patterns via Principal Component Analysis (PCA). Each load scenario is projected to the PCA space by means of a baseline model and represented using the Q-statistical indices. Experimental validation of the proposed methodology is conducted on two specimens: (i) a 12.7 mm (1/2”) diameter, 0.4 m length, AISI 1020 steel rod, and (ii) a 25.4 mm (1”) diameter, 6m length, schedule 40, A-106, hollow cylinder. Specimen 1 was subjected to axial loads, meanwhile specimen 2 to flexion. In both cases, simultaneous longitudinal and flexural guided waves were generated via piezoelectric devices (PZTs) in a pitch-catch configuration. Experimental results show the feasibility of the approach and its potential use as in-situ continuous stress monitoring application.Peer ReviewedPostprint (published version

    Hybrid modeling of renewable energy systems and its application to a hot water solar plant

    Get PDF
    IFAC - CONFERENCE ON CONTROL METHODOLOGIES AND TECHNOLOGY FOR ENERGY EFFICIENCY 29/03/2010 Vilamoura, PortugalA family of models that can be applied to various types of renewable energy plants is proposed. The methodology is used to model a solar plant for the production of sanitary water (the hot water production system installed at the “Hospital Universitario Virgen del Rocío”, Seville, Spain). A detailed examination of the behavior of the plant has produced a model which has served to identify niches of inefficiency in the operation. The model is later used to tune the parameters of a controller to improve operation.Ministerio de Ciencia y Tecnología DPI 2007-66718-C04-01Junta de Andalucía TEP-0272

    Sensor fault detection in a damage detection approach based on piezodiagnostics

    Get PDF
    Online monitoring systems demand an adequate operation of sensor system used to acquire structural state measurements. If a damaged sensor record is incorporated in the diagnosis algorithm, it could be generate uncertainties and generate unsuitable alarms. Thus, appropriate operation of sensor system is a critical requirement in order to obtain a high reliability for structural damage diagnosis algorithms. In this work a data-driven procedure is studied in order to mitigate the faulty sensor effect in a monitoring system. The studied method takes advantage of piezo-diagnostics approach, where piezoelectric devices are attached to the surface of the monitored structure to produce guided waves. Thus, piezoelectric measurements are analyzed by applying principal component analysis and cross-correlation, in order to detect abnormal behaviors. In this sense, the squared prediction error Q and Hotelling squared statistical indices are used to observe a typical behaviour caused by sensor problems or structural damages. The methodology is validated on a lab carbon steel pipe section by using scenarios that include electric power failures, disconnecting power cords as well as mass adding. As concluding remark, in this work was possible to separate structural damage and fault sensor states at different clusters.Postprint (published version

    Deep Learning-Based Fault Detection and Isolation in Solar Plants for Highly Dynamic Days

    Get PDF
    ICCAD'22: 2022- 6th International Conference on Control, Automation and Diagnosis, Lisbon, Portugal, July 13-15, 2022Solar plants are exposed to numerous agents that degrade and damage their components. Due to their large size and constant operation, it is not easy to access them constantly to analyze possible failures on-site. It is, therefore, necessary to use techniques that automatically detect faults. In addition, it is crucial to detect the fault and know its location to deal with it as quickly and effectively as possible. This work applies a fault detection and isolation method to parabolic trough collector plants. A characteristic of solar plants is that they are highly dependent on the sun and the existence of clouds throughout the day, so it is not easy to achieve methods that work well when disturbances are too variable and difficult to predict. This work proposes dynamic artificial neural networks (ANNs) that take into account past information and are not so sensitive to the variations of the plant at each moment. With this, three types of failures are distinguished: failures in the optical efficiency of the mirrors, flow rate, and thermal losses in the pipes. Different ANNs have been proposed and compared with a simple feedforward ANN, obtaining an accuracy of 73.35%.European Research Council 10.13039/50110000078

    A deep learning-based strategy for fault detection and isolation in parabolic-trough collectors

    Get PDF
    Solar plants are exposed to the appearance of faults in some of their components, as they are vulnerable to the action of external agents (wind, rain, dust, birds …) and internal defects. However, it is necessary to ensure a satisfactory operation when these factors affect the plant. Fault detection and diagnosis methods are essential to detecting and locating the faults, maintaining efficiency and safety in the plant. This work proposes a methodology for detecting and isolating faults in parabolic-trough plants. It is based on a three-layer methodology composed of a neural network to obtain a preliminary detection and classification between three types of fault, a second stage analyzing the flow rate dynamics, and a third stage defocusing the first collector to analyze thermal losses. The methodology has been applied by simulation to a model of the ACUREX plant, which was located at the Plataforma Solar de Almería. The confusion matrices have been obtained, with accuracies over 80% when using the three layers in a hierarchical structure. By forcing all the three layers, the accuracies exceed 90%.Unión Europea - Horizonte 2020 No 789 05
    corecore