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a b s t r a c t

Solar plants are exposed to the appearance of faults in some of their components, as they are vulnerable
to the action of external agents (wind, rain, dust, birds …) and internal defects. However, it is necessary
to ensure a satisfactory operation when these factors affect the plant. Fault detection and diagnosis
methods are essential to detecting and locating the faults, maintaining efficiency and safety in the plant.
This work proposes a methodology for detecting and isolating faults in parabolic-trough plants. It is
based on a three-layer methodology composed of a neural network to obtain a preliminary detection and
classification between three types of fault, a second stage analyzing the flow rate dynamics, and a third
stage defocusing the first collector to analyze thermal losses. The methodology has been applied by
simulation to a model of the ACUREX plant, which was located at the Plataforma Solar de Almería. The
confusion matrices have been obtained, with accuracies over 80% when using the three layers in a hi-
erarchical structure. By forcing all the three layers, the accuracies exceed 90%.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Themost abundant source of energy on the Earth is solar energy
[1]. This fact, coupled with the growing awareness of the impact of
traditional energy sources emitting CO2 to the atmosphere, has led
to a great deal of interest in researching and promoting solar energy
[2]. Within the different techniques for obtaining solar energy, this
paper focuses on concentrating solar power (CSP), specifically on
parabolic trough collector (PTC) fields, one of the two dominant CSP
technologies. It has the advantage of being able to store the heated
fluid to generate electricity in the absence of sunlight [3]. PTC
plants are composed of collectors with a parabolic shape that re-
flects the solar energy onto a pipe located at their focal line. At the
inside of the pipe, there is a heat transfer fluid (HTF) eusually
synthetic oil or watere that absorbs the thermal energy from the
sun to produce steam that drives a turbine generator.

Over the years, it has become increasingly possible to equip
systems with a wide variety of sensors, actuators and other com-
ponents that allow them to work with better performance. As a
result, the possibility of one of these elements failing is increasing.
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Working with incorrect measurements and defective actuators can
lead to incorrect plant behavior, low power output and dangerous
situations. Systems capable of recognizing faults are needed to
avoid these risky situations and that is where fault detection and
diagnosis (FDD) techniques appear [4]. Fault detection determines
fault occurrence by analyzing dependencies between measurable
signals and triggering alarms when necessary. Fault diagnosis is
divided into fault isolation, which determines the location of the
fault, and fault identification, which determines the size of the
fault. This paper focuses on fault detection and isolation of three
types of faults in parabolic trough collectors. Fault-tolerant control
(FTC) is the type of control that compensates the faults. Someworks
find that including an FDD module in a plant before FTC is a good
step to help the control system and state that modularity makes
them flexible and easy to implement [5].

Traditionally, most of the research in fault detection was
directed to nuclear plants, aircraft, process plants, the automobile
industry and national defense. Now, its use has been extended to
many industries [4], being one of the most commons its application
to DC motors. Isermann [6] collected some applications of FDD to
DC motor drives, where parity equations and parameters estima-
tion are combined. Other applications propose the use of con-
strained zonotopes for set-bases state estimators and fault
detection [7] or address fault detection in a brushless motor using a
particle filter as an observer [8]. In the field of energy systems,
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http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:srmoreno@us.es
mailto:asanchezdelpozo@us.es
mailto:agallego2@us.es
mailto:efcamacho@us.es
http://crossmark.crossref.org/dialog/?doi=10.1016/j.renene.2022.01.029&domain=pdf
www.sciencedirect.com/science/journal/09601481
http://www.elsevier.com/locate/renene
https://doi.org/10.1016/j.renene.2022.01.029
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.renene.2022.01.029
https://doi.org/10.1016/j.renene.2022.01.029


Fig. 1. Schematic of one loop of the collector field. Tin(t) and Tout(t) are the inlet and outlet temperatures, Tf(t, x) is the fluid temperature and q(t) is the flow rate.

Table 1
Parameters and variables description.

Symbol Description Units

r(t, T) Density kg/m3

C(t, T) Specific heat capacity J/(kg �C)
A Cross-sectional Area m2

T(t, x) Temperature �C
t Time s
x Space m
I(t) Direct solar irradiance W/m2

Kopt Optical efficiency �
no(t) Geometric efficiency �
G Collector aperture m
Hl(t, T) Thermal loss coefficient W/(m2 �C)
Ta(t) Ambient temperature �C
L Length of the inner circumference of the pipe m
Ht(t, T) Metal-fluid heat transmission coefficient W/(m2 �C)
q(t) Flow rate l/s
Lloop Loop length m
Af Transversal area of the interior pipe m2

S Total area of the field m2
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Marquez et al. [9] applied a fault detection and reconfiguration
method to the energy management system of a microgrid. It was
based on obtaining residuals to extract fault information and send
it to a reconfiguration block. Applications of fault detection, esti-
mation and fault-tolerant control in the context of microgrids can
be found in the survey by Morato et al. [10]. Ruiming et al. [11]
proposed a method to identify early defects of wind turbines using
a dynamical network marker as warning signal with data of SCADA.
Regarding the application of fault detection to photovoltaic sys-
tems, Hussain et al. [12] used radial basis functions with two input
parameters.

In the field of solar energy, most of the applications are related
to fault detection in solar thermal systems rather than fault diag-
nosis in solar power plants. In some recent works [13,14], different
deep learning models are trained to predict the performance of
solar hot water systems under different meteorological conditions
and detect faults whenever the predictions and measurements are
too far apart from each other. The approach proposed by de Keizer
et al. [15] simulated a solar thermal system and then compared the
measured and simulated energy yields to detect faults. Wiese et al.
[16] carried out simulations in solar heating systems to form a
confidence interval of the solar gain to detect faults. Heuristic rules
are used by Sun et al. [17] to perform fault diagnosis in solar heating
systems. The work carried out by de Keizer et al. [18] analyzed
methods to determine simulation uncertainties and obtain better
residuals in solar thermal systems. Neural networks are used by He
et al. [19] to detect faults and classify them by level of severity in
solar hot water systems. Faure et al. [20] presented a methodology
to determine the detectable faults in a collector and apply it to
opacification. Amethod combining support vectormachines and D-
S evidence theory is presented by Jiang et al. [21] to detect and
classify four types of faults in solar water heaters.

Regarding fault diagnosis to solar thermal power plants and,
specifically, to parabolic-trough collectors, there are few applica-
tions in the literature. They mainly base on isolating between areas
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of the solar field, considering the collector zone as a whole sub-
system instead of distinguishing between different parts of the
collectors. Kalogirou et al. [22] implemented FDD in a solar thermal
plant by using four neural networks to predict four temperatures in
different locations of the plant. With those predictions, they ob-
tained residuals to detect faults and determine if it is located in the
collectors or the pipes between the collectors and the storing sys-
tem. A similar simplification is made by Zahra et al. [23], who use
fuzzy sliding mode observers for detecting faults considering the
collectors as a closed subsystem. An application to parabolic-trough
collectors was carried out by Cardoso et al. [24,25], where faults are
detected by obtaining residuals from a model of the plant.

In this work, a three-layer methodology with artificial neural
networks is proposed to detect and diagnose faults in parabolic-
trough collectors, addressing the challenge of distinguishing be-
tween types of failures in these plants. The difficulty is because the
different types of failures are closely coupled, and it is not
straightforward to isolate the errors.The main contributions of this
work are the use of artificial neural networks combined with a
hierarchical decoupling strategy to detect and isolate faults in a PTC
plant and the isolation of three types of faults inside the collectors
area.

This novel approach can isolate faults in the optical efficiency of
the collectors, the flow rate, and the thermal losses, which poses an
advantage with respect to previous works in the field. Faults in the
optical efficiency are related to reflectivity and associated with
breakage, degradation, corrosion and coating of the collectors due
to dirt or external elements, faults in the flow rate are related to an
unbalance of the loop with respect to the entire plant ethe flow
rate assumed in a loop is the pump flow rate divided by the number
of loops as done by Gallego et al. [26], assuming there is one flow
meter for the entire plant located at the pump, as in most real
plantse, and faults in thermal losses are related to dirt, wear,
insulation and breakage of the pipes, associatedwith vacuum losses
in the tubes. For example, a temperature drop could be due to a
broken collector but also to a misreading of the flow rate in the loop
or pipe breakage. It is necessary to distinguish where the failure has
occurred to solve it quickly since the treatment is different in each
case. Cleaning a dirty collector is cheap, but changing a flow meter
is expensive, so it is desirable to do it only when it is certain that
this is the defective component. With this method, the warnings
obtained will allow the fault to be localized quickly and in a more
individualized way than previous literature methods avoiding risks
and energy losses associated with reflectivity drops and loss
coefficient.

This paper is organized as follows. First, in section 2, a
description of the model used and the control architecture is given.
Section 3 gives a brief description of artificial neural networks. The
proposed three-layer methodology is presented in section 4 and
the modes of operation are described in section 5. The simulation
results are presented in section 6 and finally, some discussion and
conclusions are given in sections 7 and 8.



Fig. 2. Schematic of a multilayer perceptron.
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2. Model of the parabolic trough collector

This section describes the ACUREX plant [27,28] used for
simulation, the twomodels employed, and the control architecture.
The plant has been widely used in the literature and was located at
the Plataforma Solar de Almería, Spain. It consists of 10 loops of 4
parabolic-trough collectors with 12modules, each of the loops with
a length of 172 m and divided into segments of length Dl ¼ 1 m.
Each loop is conformed by an active and a passive part. The active
part receives solar radiation and measures 142 m, while the passive
part is not receiving solar radiation and measures 30 m. The HTF
used is Therminol 55 thermal oil. In this work, one loop is
considered, see Fig. 1, and the adaptation of the method to more
loops is straightforward, applying the neural networks to each loop
independently.

2.1. Distributed parameter model

The model used for simulation is the distributed parameter
model (DPM) [27,29], which allows describing the system with
spatially distributed variables. Equations (1) and (2) describe the
energy balances on the metal and the fluid with the notation given
by Table 1, where the subscript m refers to metal and f refers to
fluid. The faults are modeled as multiplicators aKopt

lower than 1, aq
greater or lower than one and aHl greater than one. Values of 1
mean no-fault.

rmCmAm
vTm
vt

¼ aKopt
IKoptnoG� aHlHlGðTm � TaÞ � LHtðTm � Tf Þ

(1)

rf Cf Af
vTf
vt

þ aqrf Cf q
vTf
vx

¼ LHtðTm � Tf Þ (2)

The HTF (therminol 55) density rf and specific heat capacity Cf
are computed by equation (3).

rf ¼ 903� 0:672Tf (3a)

Cf ¼ 1820� 3:478Tf (3b)
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The metal-fluid transmission coefficient Ht and the thermal
losses coefficient Hl are given by equations (4) and (5).

Ht ¼ q0:8
�
2:17,106 � 5:01,104Tf þ 4:53,102T2f � 1:64T3f

þ 2:1,10�3T4f
�

(4)

Hl ¼ 0:00249
�
Tf � Ta

�
� 0:06133 (5)

Two types of efficiency affecting radiation are described in the
literature [30,31]. The geometric efficiency no, sometimes referred
to as cos(q), depends on the hourly angle, Julianne day, solar hour,
declination, latitude, and collector dimensions [32]. It is deter-
mined by the position of the mirrors normal vector with respect to
the radiation beam vector and can be computed online. The optical
efficiency Kopt is a factor that takes into account reflectivity, tube
absorptance, interception factor, mirror soiling and other losses.
Normally, this factor is estimated and considered constant, but its
value can vary due to multiple causes, such as dirt or deterioration
of the mirrors or deterioration of the selective coating of the tubes.
2.2. Lumped parameter model

The lumped parameter model (LPM) or concentrated parameter
model provides an approximation of the field without considering
the metal-fluid heat transmission coefficient or the spatial distri-
bution of temperatures. This model is used for implementing the
controller and in the thermal losses fault detection, where the
values of the multiplicators a are unknown and assumed equal to 1.
It describes the variation in the internal energy of the fluid, given by
equation (6).

Cloop
dTout
dt

¼ aKopt
noKoptSI � aqqPcpðTout � TinÞ

� aHlHlAðTmean � TaÞ (6)

where Cloop ¼ rmCmAfLloop is the thermal capacity of the loop,
Pcp ¼ rmCm, the subscript in refers to inlet, out stands for outlet and
Tmean is the mean temperature between the input and the output.



Fig. 3. Scheme of the three-layer methodology for decoupling faults in the collector
optical efficiency, the flow rate, and the thermal losses.
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2.3. LPM flow control

In this work, a simple controller is used for temperature refer-
ence Tref tracking manipulating the flow rate q(t). A series feed-
forward controller is implemented based on the LPM description
given above to obtain the control signal as in equation (7). The
controller sample time is 39 s, a typical sample time used in the
literature [33,34]. It is appropriate for the dominant time constants
of the ACUREX solar field when working at different regimes.

qðtÞ ¼ noKoptSI � HlAðTmean � TaÞ
PcpðTref � TinÞ

(7)

3. Artificial neural network

In this work, the output of a neural network will be used as the
basis for fault detection in a solar collector. This section aims to
briefly introduce artificial neural networks by describing their
primary operating principle.

An artificial neural network (ANN) is a type of model that can
approximate every nonlinear function by combining weighted
sums of linear functions. They are distributed in a series of layers
and nodesealso called neuronsethat try to mimic the behavior of
the human brain. ANNs originate from the work developed by
McCulloch and Pitts [35], where the aim was to emulate a neural
network using electrical circuits and, although their use was not
very popular at the beginning due to the cost of training, recent
technological advances have made them very widespread today.
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One of the most known types of ANNs is the multilayer per-
ceptron (MLP), whose scheme is shown in Fig. 2. It is a feedforward
neural network, which means that the neurons in a layer are all
connected to the neurons in the previous layer without cycles be-
tween them [36]. As shown in the figure, there are three types of
layers in an MLP: the input and output layers, directly connected to
the input and output data, and the hidden layers that transform the
information. Each neuron of an ANN computes a linear regression
problem and the combination of different neurons gives place to
more complex functions. The output of each neuron is generally
transformed to an active or non-active state by the use of activation
functions that are, generally, relay, sigmoid or hyperbolic tangent.

The parameters (weights) of each neuron are the coefficients of
a linear regressor andmust be obtained during the training process.
In neural networks with hidden layers, this is accomplished by the
backpropagation algorithm [37]. This algorithm actualizes the
weights of the neurons by using their gradients, according to the
direction in which the cost function decreases fastest. The scaled
conjugate gradient algorithm [38] is a type of conjugate gradient
method, where a search is performed along conjugate directions to
obtain a faster convergence. Before training the ANN, the dataset is
generally divided into three subsets: training set (for adjusting the
parameters), validation set (for validating the behavior and adjust
parameters) and test set (for estimating the behavior of the ANN
with new data). The process of selecting the neural network ar-
chitecture (type of ANN, number of layers and number of neurons)
is performed by trial and error until finding a neural network that
performs well on the three subsets.
3.1. Evaluation metrics

Different metrics can be used to select one neural network over
others. This work uses the percentage error and accuracy for
selecting the neural networks and the confusion matrix, accuracy,
and F1-score to validate the results. The F1-score is computed from
precision and recall:

C Percentage error: given a vector of N outputs zi ¼
½zi1; zi2;…; ziN �T , takes the index of the component with
higher value. For each output i, ind is defined as:

indðziÞ ¼ arg min
j

zij (8)

Let z be the real outputs of the data and ẑ the outputs of the
ANN. Then, the percentage error Per is the proportion of instances i
where indðzÞsindðẑÞ.

C Confusion matrix: It is a matrix that takes account of the
number of instances of each class and the number of in-
stances assigned to each class.

C Accuracy: the hit rate, being TP the number of true positives,
TN the number of true negatives, FP the number of false
positives and FN the number of false negatives.

Acc ¼ TP þ TN
TP þ TN þ FP þ FN

(9)
C Precision: the rate of correct TP over all positive-assigned
instances.

Pre ¼ TP
TP þ FP

(10)



Fig. 4. Scheme of the artificial neural network, being T the temperature, I the irradiance, q the flow rate, no the geometric efficiency, Kopt the collector optical efficiency and Hl the
thermal loss coefficient. The subscripts in, out and a refer to inlet, outlet and ambient, respectively.

Table 2
Results of the neural networks.

Neurons Per (%) Acc train (%) Acc validation (%) Acc test (%)

21 22.36 77.7 77.4 77.7
49 20.14 79.9 79.9 79.9
49e32 8.39 91.6 91.5 91.7
49-32-16 9.64 90.4 90.1 90.4
70-49-16 11.76 88.2 88.3 88.3
100 19.71 80.3 80.2 80.4
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C Recall: the rate of correct TP over all positive instances.

Rec ¼ TP
TP þ FN

(11)
C F1-score: the harmonic mean of precision and recall.
Fig. 5. Output of the neural network w
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F1 ¼ 2,
Pre,Rec
Preþ Rec

(12)
4. Three-layer “hierarchical” methodology

A new method has been designed for detecting three types of
faults in parabolic-trough collectors. Given a certain fault in the
plant, the objective is to detect and distinguish between three types
of fault: collector optical efficiency (mainly due to reflectivity), flow
rate and thermal losses. Then, the corresponding alarm is activated.
The proposed method is composed of three layers:

C Artificial Neural Network.
C Flow rate decoupling.
C Thermal losses decoupling.

This section aims to provide a complete description of the
method, which is schematized in Fig. 3. This method uses an
ith a fault in Kopt of 10% at 12:00.



Fig. 6. Output of the neural network with a fault in q of �0.5 l/s at 10:00.

Fig. 7. Values of 4 for different types of fault with a line to distinguish the flow faults.
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artificial neural network as a preliminary detector of the fault, and
then two stages of discrimination are used to decouple the types of
faults and improve the results.
4.1. First layer: ANN

The first step is applying an Artificial Neural Network to detect
the faults in the plant. One important step when applying neural
networks is selecting the inputs, as data irrelevant to the output
could slow down training and worsen the behavior. In this case, the
previous knowledge of the system dynamics has been used and the
same inputs used in the concentrated parameter model have been
696
selected: the inlet and outlet temperature of the collector loop, the
time derivative of the outlet temperature, the ambient tempera-
ture, the irradiance, the assumed flow rate and the optical effi-
ciency. The outputs directly determine the existence of failures in
the three locations contemplated. Therefore, the ANN has four
outputs scaled between 0 and 1. These outputs are related to no-
fault, fault in the optical efficiency Kopt, fault in the flow rate q
and fault in the thermal loss coefficient Hl. A low value for one of
these variables indicates a low likelihood of that situation, while
high values indicate that this is likely to be the governing situation.
Fig. 4 shows the scheme of the neural network.

Several simulations have been performed combining different



Fig. 8. aHl
estimations obtained in a one-day simulation with a reference temperature of 250 �C.

Table 3
Confusion matrix for mode 1.

Real

faultless Kopt q Hl

Predicted faultless 170 0 13 0
Kopt 38 151 13 5
q 6 59 143 5
Hl 2 6 47 206

Table 4
Confusion matrix for mode 2.

Real

faultless Kopt q Hl

Predicted faultless 174 3 13 0
Kopt 39 197 3 1
q 1 13 145 2
Hl 2 3 55 213

Table 5
Confusion matrix for mode 3.

Real

faultless Kopt q Hl

Predicted faultless 180 0 13 0
Kopt 36 211 9 9
q 0 5 194 0
Hl 0 0 0 207

Table 6
Accuracies and F1-scores of each mode.

Mode F1-score (%) Acc (%)

Faultless Kopt fault q fault Hl fault

1 85.21 71.39 66.67 86.37 77.55
2 85.71 86.40 76.92 87.12 84.38
3 88.02 87.73 93.49 97.87 91.67
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irradiance values between 800 W/m2 and 1000 W/m2, reference
temperatures between 210 �C and 300 �C and failure times between
10 h and 14 h. Lower values would hinder the operation due to a
change in the dynamics of the plant. For this reason, the method is
applied on clear days or situations with an stable operation where
no passing clouds are affecting the field. A dataset of 1087992 data
was obtained, which was divided into training (75%), validation
(10%) and test (15%) sets. Different ANNs have been trained with
scaled conjugate gradient backpropagation. Table 2 shows the re-
sults obtained from these neural networks, indicating the number
of nodes in each hidden layer in column “Neurons”. The selected
ANN is the third one, with 49 nodes in the first hidden layer and 32
in the second one, as it provides the lowest percentage error and
the greatest accuracies. All layers contain hyperbolic tangent sig-
moid functions, except for the last one, which contains a softmax
function that transforms the data into the range [0,1].

Once selected, the neural network is applied to the plant with a
sample time of 39 s, which is the same as the controller sample
time. To avoid false alarms due to instantaneous changes in the
plant, the output of the neural networks is filtered with a time
constant of 1 h. Afterward, a failure will be detected when one of
the outputs is greater than 0.5. The ANN is applied to one-day
simulations with constant perturbances for a more straightfor-
ward visualization of the results. Fig. 5 shows the output of the
neural network after a Kopt fault of 10% occurring at 12:00 with a
reference temperature of 300 �C and a constant irradiance of
800 W/m2. As it can be observed, before 12:00, the output of the
neural network is “no-fault”. When the fault appears, it can be seen
how the neural network output starts to change. The output related
to a fault in the optical efficiency increases reaching a high value,
and the fault can be detected.

Sometimes, neural networks may give non-determinant results.
As an example of these occasions, Fig. 6 shows a case of �0.5 l/s
fault in the flaw rate at hour 12 with a reference temperature of
300 �C and a constant irradiance of 1000 W/m2. This graph shows
how the neural network detects a wrong fault during the first 2 h.
This is because in this type of plant, the faults are very closely
coupled to each other, and it can be very complicated to decouple
them with a single model. The methodology proposed for decou-
pling the faults will be explained in the following sections of this
document.
697
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4.2. Second layer: flow rate decoupling

As the neural network sometimes encounters difficulties in
alarming, a second layer is designed to decouple the flow-rate
faults from the others when the output of the neural network is
not completely clear. The strategy consists of imposing a small drop
of 0.1 l/s and analyzing the dynamics of the system in the second
collector, which will be different for scenarios with a fault in the
flow rate, as it is the governing variable. Cases with faults in
reflectivity or thermal losses should not affect significantly. If the
rise time of the temperature ts of 25% differs from a specific value, a
flow-rate fault is detected. For this purpose, a small dataset of 231
data has been constructed to model the relationship between q, ts
and no. This dataset will be used to obtain a reference rise time t0s by
interpolation. Then, the residual 4 is obtained:

4 ¼ max

 
ts
t0s
;
t0s
ts

!
(13)

The limit of the residual must be lower for higher values of the
flow rate. This is performed by using a variable limit given by
4max ¼ � 0.101 695q þ 1.196 95, experimentally obtained from the
dataset. Some experiments have been carried out to validate this
layer of the methodology. Fig. 7 shows the values of 4 obtained by
applying different types of faults to the plant, varying the moment
and size of the fault.

It is worth mentioning the extreme situation in which the
mirrors are completely dirty or broken since, in this case, the
temperature will not be affected by a variation in the flow rate. If
this occurs, a failure in the optical efficiency Kopt will be alarmed
directly. If a variation in the temperature of the second collector is
detected and the residual 4 exceeds the limit, a flow-rate failure
will be alarmed. Otherwise, faults in the flow rate are discarded,
and the next layer can be applied.
4.3. Third layer: thermal losses decoupling

If the non-existence of flow-rate failures has been confirmed, it
is possible to analyze the thermal losses. The strategy is to defocus
the first collector of the loop and estimate the coefficient Hl from
the lumped-parameter model of equation (6) applied to this col-
lector. Defocusing is a mechanism that consists of reducing the
global efficiency of a collector by modifying the angle of incidence
of the sun's rays. This mechanism is used in commercial plants to
avoid excessively high oil temperatures and has been included in
the control strategy in Ref. [39]. It is possible to use the lumped-
parameter model after decoupling the other two variables: the
flow rate is known to be non-faulty and the effect of total defo-
cusing causes the efficiency of the collectors to cease to affect the
Fig. 9. Reference tem
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model, resulting in equation (14). An estimate of the multiplier aHl

has been added to be used as a residual of the thermal losses to be
extracted from equation (14).

Cloop
vT1
vt

¼ �qPcpðT1 � TinÞ � âHl
Hl,AðTmean;1 � TaÞ (14)

where T1 is the temperature in the center of the first collector and
Tmean,1 is the mean temperature between the input and the center
of the first collector.

When the residual value is 10% away from unity ei.e., aHl
;ð0:9;

1Þe, it is considered that there is a failure in the thermal losses and
so it will be alarmed. Fig. 8 shows the value of aHl

obtained in a one-
day simulation with a reference temperature of 250 �C and a vari-
able irradiance profile where an incipient fault was introduced. The
estimated value of aHl

always stays close to the actual value and,
during the non-failure time, it is far from the limits. Although there
is a fair amount of slack in these limits, they help avoid false pos-
itives when sudden changes in irradiance occur, such as the one
before hour 12.

5. Operating modes

The proposed methodology is composed of three phases, each
one dedicated to decoupling one type of fault. As previously shown,
the neural network is capable of detecting a high failure rate on its
own, so it is possible to use it without activating the other two
phases. On the other hand, the use of the three stages provides
better fault detection at the cost of momentarily stopping the
normal operation of the plant. According to the advantages and
disadvantages of the three layers, the proposed method can be
applied in three different modes:

1. Using only the first layer (ANN).
2. Using the three layers (as represented in Fig. 3).
3. Using the ANN only to distinguish between faulty/non-faulty

and force the next two layers whenever a fault is detected,
regardless of the type of fault that the ANN is alarming.

Since the neural network outputs must sum to 1, the first mode
decides that failure has been detected when one of the outputs
associated with failure is greater than 0.5. In this way, the fault is
assigned to the output with the highest value and it is taken into
account that the value of the output associated with no-fault is low.

Mode 2 is the standard mode, since it decides when each of the
three phases needs to be applied. First, the output with the highest
value is selected as a candidate and then checked to ensure that it is
greater than 0.9. If not, the flow rate is checked. If the output
associated with the flow rate is not too lowein this case, it has been
selected to be greater than 0.2e, the flow rate is checked. If no flow
perature profile.



Fig. 10. Results for a 115% fault introduced in the thermal losses at 12:00.

Fig. 11. Temperature, irradiation and flow rate for a 115% fault introduced in the thermal losses at 12:00. The discontinuous line shows the non-faulty temperature.

Fig. 12. Results for a þ0.1 l/s in the flow-rate at 14:00.
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Fig. 13. Temperature, irradiation and flow rate for a þ0.1 l/s in the flow-rate at 14:00. The discontinuous line shows the non-faulty temperature.

Fig. 14. Results for a 80% in the optical efficiency at 11:00.
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failure is detected, the third stage is started as long as the output
associated with the losses is at least twice the output associated
with the optical efficiency.

Finally, mode 3 consists of applying the three stages, one after
the other. The neural network is used only to distinguish between
failure and non-failure. As soon as the output associated with non-
fault is not the highest value, the flow decoupling stage is applied.
If, after this stage, no flow failure is detected, it moves to the third
stage, where it will be decided whether it is a failure in the optical
efficiency or the losses.

To compare the three modes, one-day simulations have been
carried out using constant parameter values, with irradiances be-
tween 800 and 1000 W/m2 and reference temperatures between
210 and 300 �C. In each of these simulations, abrupt failures
occurring at different times between hours 10 and 14 were
700
simulated. Wide ranges of faults have been used to cover the
different possibilities, with multiplicative faults in the optical effi-
ciency between 10 and 90% (100% means no failure), additive faults
in flow rate between �0.5 l slash s and þ0.5 l slash s (0 means no
failure), andmultiplicative faults in thermal losses between 110 and
200%. The confusion matrices obtained with these simulations are
given by Tables 3e5 and the accuracies and F1-scores are shown in
Table 6.

6. Results

This section aims to provide some results obtained by simu-
lating the complete system under different circumstances. In order
to obtain results similar to real applications, variable values of
irradiance and reference temperature have been used. Several tests



Fig. 15. Temperature, irradiation and flow rate for a 80% in the optical efficiency at 11:00. The discontinuous line shows the non-faulty temperature.

Table 7
Confusion matrix for mode 1 with a large neural network (ANN 2).

Real

faultless Kopt q Hl

Predicted faultless 216 0 10 0
Kopt 0 185 11 0
q 0 29 149 9
Hl 0 2 46 207

Table 8
Confusion matrix for mode 2 with a large neural network (ANN 2).

Real

faultless Kopt q Hl

Predicted faultless 216 0 10 0
Kopt 0 196 7 1
q 0 20 148 6
Hl 0 0 51 209

Table 9
Confusion matrix for mode 3 with a large neural network (ANN 2).

Real

faultless Kopt q Hl

Predicted faultless 216 0 13 0
Kopt 0 213 12 8
q 0 3 191 1
Hl 0 0 0 207

Table 10
Accuracy and F1-score for each mode with a large neural network (ANN 2).

Mode F1-score (%) Acc (%)

Faultless Kopt fault q fault Hl fault

1 97.74 89.91 73.95 87.90 87.62
2 97.74 93.33 75.90 87.82 89.00
3 97.08 94.88 92.94 97.87 95.72
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have been carried out using the irradiance and temperature set-
points profiles shown in Figs. 8 and 9, respectively. These profiles
have been applied for different types of faults using mode 2 since it
provides a compromise between precision in the detection and
performance of the plant.

In Fig. 10, a 115% fault was introduced in the thermal losses at
12:00. The output of the ANN was clear enough, with no need for
the next layers of the strategy, so the system detects the fault
precisely. The evolutions of the temperature, irradiance and flow
rate are shown in Fig. 11, where a drop in the outlet temperature
can be observed.

Fig. 12 shows the results obtained introducing a fault of þ0.1l/s
to the flow rate at 14:00. In this case, the second layer of the
strategy was satisfactorily applied. The effect of the failure in the
outlet temperature can be seen in Fig. 13. In this case, the drop is
highly appreciable, as well as the effect of the decoupling strategy
around 15:15.

Fig. 14 shows the results obtained with a multiplicative fault of
0.8 (drop of 20%) in the optical efficiency from 11:00, where the
output was not clear too and the third layer helped distinguish
between faults in the optical efficiency and thermal losses. Fig. 15
shows the evolution of temperature, irradiation and flow rate and
compares the temperature obtained with the temperature that
would be obtained in a non-faulty scenario. The huge difference
makes it crucial to solve the failure.

Different neural networks can be used as first layer of the
method. Tables 7e10 gather the confusion matrices, accuracies and
F1-scores obtained using a neural network of 400 nodes in the first
layer and 200 nodes in the second one. Since the number of correct
outputs of the neural network is quite high and the errors corre-
spond to wrong saturated outputs of the neural network, there is
not much difference between the first two modes. The use of larger
neural networks improves results at the expense of higher
computational cost and longer training times.
7. Discussion

In this section, a discussion of the results obtained and the
applicability of the proposed method is carried out. Some com-
ments are extracted:



Fig. 16. Results for a 75% in the optical efficiency and a þ0.15 l/s in the flow rate at 12:00.
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C The second neural network requires a greater training effort
and its use is limited to systems with sufficient computa-
tional capacity, but it provides better results, increasing the
accuracy by 4.62%.

C The results are improved by applying failure decoupling
stages. Mode three provides the highest accuracy at the
expense of modifying the flow rate and defocusing the col-
lectors each time a fault appears in the plant. In contrast,
mode two obtains a lower accuracy, but modifications are
only made to the plant behavior when deemed necessary.
The selection of one method or the other will depend on the
specific application and circumstances, and the choice is left
to the operator.

C In an actual plant, the probability of more than one fault
occurring simultaneously is very low. Even though the pro-
posed methodology considers this circumstance implicitly
and can even detect more than one fault on some occasions.
The proposed system will detect one of the two failures and
send the necessary information to the operators. When the
corresponding fault is fixed, the systemwill alarm again, this
time detecting the remaining fault. An example is shown in
Fig. 16, where a multiplicative fault of 0.75 was introduced in
the optical efficiency and an additive fault of 0.15 was
introduced in the flow rate at 12:00. The system detects the
fault in the flow rate and, when the operator solves it, the
other fault is detected. A more exhaustive study of these
cases will be the subject of future development.
8. Conclusions

In this work, a methodology is proposed for fault diagnosis in
parabolic-trough plants. Three types of faults are detected and
isolated: faults in the optical efficiency, the flow rate and the
thermal losses. An artificial neural network is used to detect faults
and obtain a first approximation of the fault classification. Then,
two stages are added by slightly modifying the flow rate and the
defocusing of the collectors to analyze the dynamics and improve
the results. These stages are combined in a three-layer hierarchical
702
methodology.
Threemodes of operation have been proposed depending on the

credibility given to the initial neural network and the importance
given to the fault decoupling stages. The first mode only uses the
ANN layer, the third mode always uses the other two layers, and the
secondmode is an intermediate approach between them. Themore
layers of decoupling types of faults are forced to act, the better the
results, but at the expense of small disturbances in the normal
operation of the plant.

Regarding the applicability of this method to an actual plant,
real data could be used. The dataset of this work was obtained from
11787 h of simulation in one loop. Given that there is only enough
radiation around 7 h a day, this dataset corresponds to 4.6 years
with forced faults and fault-free. However, the ACUREX plant is
formed by 10 loops, reducing the required time to 168 days. This
number is decreased for commercial plants, fromwhich past data is
available. For instance, Solacor 2 [40] (with 90 loops) would need 19
days, and Mojave [41] (with 282 loops) would need 6 days. This
calculation does not consider that obtaining the desired faulty data
in real plants is not straightforward, so it would be necessary to
augment the collected data and then apply techniques to reduce
them selectively. Amodel of the plant could be adjusted to generate
more days with cases that occur infrequently in a real plant and
reduce the time required.

Future work will focus on using this methodology on the entire
plant, analyzing the different faults on each collector and for all the
loops in the plant, as well as improving themethodology in order to
determine the magnitude of the failures and study the occurrence
of multiple simultaneous faults.
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[1] Z. Şen, Solar energy in progress and future research trends, Prog. Energy
Combust. Sci. 30 (4) (2004) 367e416.

[2] M. Blanco, S. Miller, 1 - introduction to concentrating solar thermal (cst)
technologies, in: M.J. Blanco, L.R. Santigosa (Eds.), Advances in Concentrating
Solar Thermal Research and Technology, Woodhead Publishing Series in En-
ergy, Woodhead Publishing, 2017, pp. 3e25.

[3] M.T. Islam, N. Huda, A.B. Abdullah, R. Saidur, A comprehensive review of state-
of-the-art concentrating solar power (csp) technologies: current status and
research trends, Renew. Sustain. Energy Rev. 91 (2018) 987e1018.

[4] D. Miljkovi�c, Fault detection methods: a literature survey, in: MIPRO, 2011
Proceedings of the 34th International Convention, 2011, pp. 750e755.

[5] E. Bernardi, E.J. Adam, Observer-based fault detection and diagnosis strategy
for industrial processes, J. Franklin Inst. 357 (14) (2020) 10054e10081.

[6] R. Isermann, Fault-diagnosis Systems: an Introduction from Fault Detection to
Fault Tolerance, Springer Science & Business Media, 2006.

[7] J.K. Scott, D.M. Raimondo, G.R. Marseglia, R.D. Braatz, Constrained zonotopes:
a new tool for set-based estimation and fault detection, Automatica 69 (2016)
126e136.

[8] L.M.S. Vianna, J.P.S. Gonçalves, F. Fruett, M. Giesbrecht, Fault detection in
brushless dc motor via particle filter, in: 2020 IEEE 29th International Sym-
posium on Industrial Electronics, ISIE, 2020, pp. 295e299.

[9] J. Marquez, A. Zafra-Cabeza, C. Bordons, M.A. Ridao, A fault detection and
reconfiguration approach for mpc-based energy management in an experi-
mental microgrid, Control Eng. Pract. 107 (2021) 104695.

[10] M.M. Morato, P.R.C. Mendes, J.E. Normey-Rico, Dealing with energy-
generation faults to improve the resilience of microgrids: a survey, in: 2019
IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT
Latin America, 2019, pp. 1e6.

[11] F. Ruiming, W. Minling, G. xinhua, S. Rongyan, S. Pengfei, Identifying early
defects of wind turbine based on scada data and dynamical network marker,
Renew. Energy 154 (2020) 625e635.

[12] M. Hussain, M. Dhimish, S. Titarenko, P. Mather, Artificial neural network
based photovoltaic fault detection algorithm integrating two bi-directional
input parameters, Renew. Energy 155 (2020) 1272e1292.

[13] C. Correa-Jullian, J.M. Cardemil, E.L. Droguett, M. Behzad, Assessment of deep
learning algorithms for fault diagnosis in solar thermal systems, in: ISES Solar
World Congress 2019, 2019.

[14] C. Correa-Jullian, J.M. Cardemil, E. L�opez Droguett, M. Behzad, Assessment of
deep learning techniques for prognosis of solar thermal systems, Renew.
Energy 145 (2020) 2178e2191.

[15] C. de Keizer, S. Kuethe, U. Jordan, K. Vajen, Simulation-based long-term fault
detection for solar thermal systems, Sol. Energy 93 (2013) 109e120.

[16] F. Wiese, K. Vajen, M. Krause, A. Knoch, Automatic fault detection for big solar
heating systems, in: Proceedings of ISES World Congress 2007, IeVol. V,
Springer, 2008, pp. 759e763.
703
[17] C.K. Sun, C.W. Chan, P. Tontiwachwuthikul, Intelligent diagnostic system for a
solar heating system, Expert Syst. Appl. 16 (2) (1999) 157e171.

[18] A. de Keizer, K. Vajen, U.-k. Jordan, Sensitivity and uncertainty analysis for
fault detection in solar thermal systems, in: Proc. Of Solar World Congress, vol.
28, Kassel, 2011.

[19] H. He, D. Menicucci, T. Caudell, A. Mammoli, Real-time fault detection for solar
hot water systems using adaptive resonance theory neural networks, Energy
Sustainability 54686 (2011) 1059e1065.

[20] G. Faure, M. Vall�ee, T. Tran-Quoc, N. Lamaison, C. Paulus, A Methodology to
Analyse Fault Effect on Large Solar Thermal System Behaviour, 2018.

[21] S. Jiang, M. Lian, C. Lu, S. Ruan, Z. Wang, B. Chen, SVM-DS fusion based soft
fault detection and diagnosis in solar water heaters, Energy Explor. Exploit. 37
(3) (2019) 1125e1146.

[22] S. Kalogirou, S. Lalot, G. Florides, B. Desmet, Development of a neural network-
based fault diagnostic system for solar thermal applications, Sol. Energy 82 (2)
(2008) 164e172.

[23] T. Zahra, L. M. Mourad, A. H. Ahmed, Robust fuzzy sliding mode observer for
faults detection in solar power plant application., Instrum. Mes. M�etrol. 19 (4).

[24] A. Cardoso, P. Gil, J. Henriques, P. de Carvalho, H. Duarte-Ramos, A. Dourado,
A Robust Fault Tolerant Control Framework: Application to a Solar Power
Plant, 2003.

[25] A. Cardoso, P. Gil, J. Henriques, P.d. Carvalho, H. Duarte-Ramos, A. Dourado,
Experiments with a fault tolerant adaptive controller on a solar power plant,
in: CONTROLO04, 6th Portuguese Conf. On Automatic Control, Faro, Portugal,
Citeseer, 2004.

[26] A.J. Gallego, M. Macías, F. de Castilla, E.F. Camacho, Mathematical modeling of
the Mojave solar plants, Energies 12 (21) (2019) 4197.

[27] E.F. Camacho, M. Berenguel, F.R. Rubio, Advanced Control of Solar Plants,
Springer, 1997.

[28] E.F. Camacho, M. Berenguel, F.R. Rubio, D. Martinez, Control of Solar Energy
Systems, Springer-Verlag, 2012.

[29] R. Carmona, Analisis, modelado y control de un campo de colectores solares
distribuidos con sistema de seguimiento en un eje, Universidad de Sevilla,
Seville.

[30] D.Y. Goswami, F. Kreith, J.F. Kreider, Principles of Solar Engineering, CRC Press,
2000.

[31] R. €Osterholm, J. Pålsson, Dynamic modelling of a parabolic trough solar power
plant, in: Proceedings of the 10th International Modelica Conference, 2014,
pp. 409e418.

[32] A. J. Gallego, L. J. Yebra, E. Fern�andez Camacho, A. J. S�anchez, Mathematical
Modeling of the Parabolic Trough Collector Field of the Tcp-100 Research
Plant.

[33] S.J. Navas, F.R. Rubio, P. Ollero, J.M. Lemos, Optimal control applied to
distributed solar collector fields with partial radiation, Sol. Energy 159 (2018)
811e819.

[34] A.J. S�anchez, A.J. Gallego, J.M. Esca~no, E.F. Camacho, Temperature homogeni-
zation of a solar trough field for performance improvement, Sol. Energy 165
(2018) 1e9.

[35] W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous
activity, Bull. Math. Biophys. 5 (4) (1943) 115e133.

[36] T.L. Fine, Feedforward Neural Network Methodology, Springer Science &
Business Media, 2006.

[37] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-
propagating errors, nature 323 (6088) (1986) 533e536.

[38] M.F. Møller, A scaled conjugate gradient algorithm for fast supervised
learning, Neural Network. 6 (4) (1993) 525e533.

[39] A.J. S�anchez, A.J. Gallego, J.M. Esca~no, E.F. Camacho, Event-based mpc for
defocusing and power production of a parabolic trough plant under power
limitation, Sol. Energy 174 (2018) 570e581.

[40] Solacor 2 project, URL https://solarpaces.nrel.gov/project/solacor-2 (Dec
2021).

[41] Mojave solar project, URL https://solarpaces.nrel.gov/project/mojave-solar-
project (Dec 2021).

http://refhub.elsevier.com/S0960-1481(22)00028-3/sref1
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref1
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref1
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref1
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref2
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref2
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref2
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref2
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref2
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref3
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref3
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref3
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref3
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref4
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref4
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref4
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref4
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref5
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref5
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref5
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref6
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref6
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref6
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref7
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref7
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref7
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref7
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref8
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref8
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref8
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref8
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref9
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref9
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref9
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref10
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref10
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref10
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref10
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref10
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref11
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref11
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref11
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref11
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref12
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref12
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref12
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref12
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref13
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref13
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref13
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref14
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref14
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref14
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref14
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref14
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref15
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref15
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref15
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref16
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref16
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref16
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref16
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref16
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref17
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref17
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref17
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref18
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref18
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref18
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref19
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref19
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref19
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref19
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref20
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref20
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref20
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref21
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref21
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref21
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref21
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref22
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref22
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref22
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref22
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref24
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref24
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref24
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref25
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref25
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref25
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref25
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref26
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref26
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref27
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref27
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref28
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref28
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref30
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref30
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref31
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref31
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref31
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref31
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref31
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref33
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref33
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref33
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref33
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref34
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref34
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref34
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref34
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref34
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref34
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref35
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref35
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref35
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref36
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref36
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref37
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref37
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref37
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref38
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref38
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref38
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref38
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref39
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref39
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref39
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref39
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref39
http://refhub.elsevier.com/S0960-1481(22)00028-3/sref39
https://solarpaces.nrel.gov/project/solacor-2
https://solarpaces.nrel.gov/project/mojave-solar-project
https://solarpaces.nrel.gov/project/mojave-solar-project

	A deep learning-based strategy for fault detection and isolation in parabolic-trough collectors
	1. Introduction
	2. Model of the parabolic trough collector
	2.1. Distributed parameter model
	2.2. Lumped parameter model
	2.3. LPM flow control

	3. Artificial neural network
	3.1. Evaluation metrics

	4. Three-layer “hierarchical” methodology
	4.1. First layer: ANN
	4.2. Second layer: flow rate decoupling
	4.3. Third layer: thermal losses decoupling

	5. Operating modes
	6. Results
	7. Discussion
	8. Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	References


