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Abstract—Solar plants are exposed to numerous agents that
degrade and damage their components. Due to their large size
and constant operation, it is not easy to access them constantly
to analyze possible failures on-site. It is, therefore, necessary
to use techniques that automatically detect faults. In addition,
it is crucial to detect the fault and know its location to deal
with it as quickly and effectively as possible. This work applies a
fault detection and isolation method to parabolic trough collector
plants. A characteristic of solar plants is that they are highly
dependent on the sun and the existence of clouds throughout the
day, so it is not easy to achieve methods that work well when
disturbances are too variable and difficult to predict. This work
proposes dynamic artificial neural networks (ANNs) that take
into account past information and are not so sensitive to the
variations of the plant at each moment. With this, three types
of failures are distinguished: failures in the optical efficiency
of the mirrors, flow rate, and thermal losses in the pipes.
Different ANNs have been proposed and compared with a simple
feedforward ANN, obtaining an accuracy of 73.35%.

Index Terms—artificial intelligence, artificial neural networks,
fault detection and diagnosis, solar energy, parabolic-trough
collectors

I. INTRODUCTION

With the advancement of industry and technology, energy
demand has risen dramatically and is expected to continue to
increase drastically in the coming years [1]. This augments
the consumption of the planet’s resources and emissions into
the atmosphere. That is why now the reduction of greenhouse
emissions is a priority [2] and the use of renewable energy
sources is necessary for the planet, and sustainable develop-
ment [3].

The renewable energy sources being harvested nowadays
are wind, hydraulic and solar. Specifically, solar energy is
increasingly attractive [4], as it is the most abundant. This
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work focuses on the use of solar thermal energy, in partic-
ular on parabolic-trough collectors (PTC), which consist of
parabolic mirrors that concentrate the solar irradiance onto a
tube containing a fluid to produce steam and drive a turbine
generator [5].

Industrial plants are increasingly equipped with sensors and
actuators, among many other components, which increases the
risk of failure. Therefore, fault detection and diagnosis (FDD)
techniques are of vital importance. Fault detection consists
of warning of the existence of a fault, usually through the
use of residuals, and triggering an alarm. Diagnosis provides
more information about the fault and is broken up into
isolation (determines its location and type) and identification
(determines its magnitude). Fault detection and isolation (FDI)
is a subcategory of FDD techniques.

Many FDD techniques exist [6], [7]. Quantitative model-
based methods are founded on mathematical functional rela-
tionships through e.g., observers [8], or parity equations [9].
Qualitative model-based methods express the model in terms
of qualitative functions with e.g., fuzzy logic [10]. Process
history-based methods use large amounts of historical data to
obtain knowledge from experience, generally using machine
learning [11]–[13].

In the field of solar thermal energy [7], and especially in
PTCS, where the faults are strongly coupled, this field has
not been explored in depth. Some works address the detection
phase [14], and others make a broad diagnosis, considering the
PTC as a single subsystem [15]. This paper is the continuation
of a previous work [16] that proposed a methodology based on
artificial neural networks (ANNs) and two decoupling stages
by analyzing the rise time and the effect of defocusing.

Renewable energies depend strongly on weather conditions
and are difficult to predict. Dealing with the unreliability of
the sources is a challenging factor for the system safety and
management [17]. The solar radiation that reaches the PTCs
depends strongly on the amount, sizes, and speed of clouds [2],



which hinders the application of FDD techniques. Moreover,
the rise time analysis and residuals lose effectiveness due to the
strong transients that lead to false positives. The previous work
assumed clear days to isolate the different faults; however, this
work eliminates this assumption, for which it proposes the use
of dynamic neural networks that take into account the temporal
evolution of the system.

The main contribution of this work is the inclusion of highly
complex irradiance days in the FDD system design for PTCs
by using ANNs that look into the past. For this purpose,
it uses real irradiance profiles that reflect the appearance of
different types of clouds in the plant. Taking into account real
radiation is a challenge since the behavior of a system changes
plenty depending on the radiation profile, and it is not easy to
generalize. When considering real different clouds, transients
are introduced into the system and both radiation and flow rate
change. This strongly modifies the dynamics of the plant and
makes it very complex and difficult to manage. Therefore,
neural networks that take into account past information are
necessary to deal with this strong dynamic.

This paper is organized as follows. Section 2 provides
a description of the system, including the model and the
controller. Next, section 3 details the proposed methodology,
introducing ANNs and the evaluation metrics. The simulation
results are shown in section 4, and, finally, some discussion
and conclusions are extracted in sections 5 and 6, respectively.

II. SYSTEM DESCRIPTION

This section aims to provide a brief description of the
system. In this work, the simulations were carried out on the
ACUREX plant [5], wich was located at the Plataforma Solar
de Almerı́a. It is conformed by 10 loops of 4 sngle-axis PTCs
with 12 modules. The loops are 172 m long, with an active
part (the one that receives solar radiation) of 142 m and a
passive part of 30 m., and the fluid employed is Therminol 55
thermal oil. In this work, one loop of collectors is considered,
see figure 1, as the proposed methodology can be applied to
each loop independently.

Fig. 1. ACUREX collector loops.

TABLE I
PARAMETERS AND VARIABLES DESCRIPTION.

Symbol Description Units
A Cross-sectional Area m2

ρ(t, T ) Density kg/m3

C(t, T ) Specific heat capacity J/(kg ◦C)
Af Transversal area of the interior pipe m2

G Collector aperture m
L Pipe length m

Ta(t) Ambient temperature ◦C
T (t, x) Temperature ◦C
q(t) Flow rate l/s
I(t) Direct solar irradiance W/m2

Kopt Optical efficiency −
no(t) Geometric efficiency −

Hl(t, T ) Thermal loss coefficient W/(m2 ◦C)
Ht(t, T ) Metal-fluid heat transmission coefficient W/(m2 ◦C)

t Time s

A. Distributed parameter model
The distributed parameter model [18], [19] is used for

simulating the plant. It describes the system with energy
balances on the metal and the fluid circulating through the
pipes. The model is computed by equations 1 and 2 with
the notation given by table I and the subscripts m and f
referring to metal and fluid, respectively. Multiplicative faults
are considered and modelled as parameters αKopt < 1, αq ̸= 1
and αHl > 1. The non-faulty situation is represented with
values of 1 in these parameters. For simulating the system,
the loop is divided into 1 m long segments and a simulation
time of 0.25 s is used. The reader may refer to the previous
paper [16] for more details on the model.

ρmCmAm
∂Tm

∂t
= αKopt

IKoptnoG+

−HlG(Tm − Ta)− LHt(Tm − Tf )
(1)

ρfCfAf
∂Tf

∂t
+ αqρfCfq

∂Tf

∂x
= LHt(Tm − Tf ) (2)

The specific heat capacity Cf and the fluid density ρf are
computed by equations 3 y 4.

Cf = 1820− 3.478Tf (3)

ρf = 903− 0.672Tf (4)

Equations 5 and 6 give the metal-fluid transmission coeffi-
cient Ht and the thermal losses Hl coefficient.

Ht = q0.8(2.17 · 106 − 5.01 · 104Tf + 4.53 · 102T 2
f+

−1.64T 3
f + 2.1 · 10−3T 4

f )
(5)

Hl = 0.00249 (Tf − Ta)− 0.06133 (6)

The geometric efficiency no, also known as cos(θ), is
computed by using the position of the mirror normal vector
relative to the radiation beam vector and depends on the
declination, latitude, hourly angle, solar hour, Julianne day
and collector dimensions [20], [21].



B. Lumped parameter model flow control

A series feedforward controller is used for temperature
reference tracking by manipulating the flow rate q(t). The
control signal is obtained from the lumped parameter model,
which approximates the behavior of the system using the
variation of the internal energy of the fluid. The selected
sample time is 39 s [22], [23] and the control signal is given
by equation 7, where Pcp = ρmCm, Tref is the reference
temperature and Tmean is the mean value of the inlet and
outlet temperatures Tin and Tout.

q(t) =
noKoptSI −HlA(Tmean − Ta)

Pcp(Tref − Tin)
(7)

III. PROPOSED METHODOLOGY

The method used is based on dynamic neural networks that
classify the data into four groups: no fault, fault in Kopt, fault
in q and fault in Hl. This section describes the general idea
of artificial neural networks and the evaluation metrics used
in this work.

A. Artificial neural network

An artificial neural network (ANN) is an approximator
of nonlinear functions formed by the combination of linear
regressors placed at the neurons, also called nodes. The origin
of neural networks takes back to the first half of the 20th
century [24] and now, with the development of technologies
and computing, they are being applied to many different fields
[25].

The multilayer perceptron is one of the most common
ANNs, in which the neurons are arranged in layers of three
types: an input layer, an output layer, and hidden layers that
transform the data. The structure (i.e., the number of nodes and
layers) and some neural network parameters are selected in an
iterative process. An initial architecture is chosen, the ANN
is trained, then evaluated, and the whole process is repeated
until the desired results are obtained.

Each neuron solves a linear regression problem, and the
weights are obtained in the training phase of the ANN, where
the output error is used as cost function. The backpropagation
algorithm [26], [27] allows the ANN to compute the partial
derivatives for adapting the weights iteratively, according to
the direction of greatest decrease of the cost function. The
scaled conjugate gradient algorithm [28] is a backpropagation
method that uses conjugate directions for faster convergence.

The output of each neuron represents an activation state
using activation functions. This work uses hyperbolic tangent
sigmoid functions for all layers, except for the last one, which
contains a softmax function that transforms the data into the
range [0, 1]. The ANN has one output for each class. Values
near 1 correspond to higher possibilities of being the correct
class. When the ANNs are dynamic, they take into account
the variation of the variables with time. In this case, the inputs
contain delays to take account of the dynamic behavior of the
system.

For training the ANNs, many simulations are made to
obtain a representative dataset. Then, it is scaled in the range
[−1,+1], randomized (conserving the selected time windows),
and divided into three subsets: a training set for adjusting
the parameters, a validation set for validating online and
readjusting some parameters, and a test set for estimating the
behavior of the ANN with new data.

B. Evaluation metrics

To validate the behaviour of the neural networks, the follow-
ing metrics are used in this work. The accuracy is used either
in the training process or in the simulations. The F1-score is
used in the simulations.

• Accuracy: the rate of true positives (TP) over all in-
stances: true positives, false positives (FP), true negatives,
and false negatives (FN).

Acc =
TP + TN

TP + FP + TN + FN
(8)

• Precision: the rate of correct TP over all positive-assigned
instances.

Pre =
TP

TP + FP
(9)

• Recall: the rate of correct TP over all positive instances.

Rec =
TP

TP + FN
(10)

• F1-score: the harmonic mean of recall and precision.

F1 = 2 · Rec · Pre

Rec+ Pre
(11)

IV. SIMULATION RESULTS

The results obtained from different simulations are pre-
sented in this section. Different ANNs were trained, and the
most promising ones were selected to perform batches of
simulations to compare their performance.

For all the experiments, the distributed parameter model
divides the collector loop into 172 segments of 1 m, and it
is solved with an integration time of 0.25 s. The controller
sample time is 39 s [23].

Ten real irradiance profiles were obtained. The seven of
them that are shown in figure 2 were used for creating the
dataset, and the remaining three were used for validation pur-
poses. The dataset was created from simulations corresponding
to 1259256 instances (13462 hours) of one-day simulations
eliminating data out of range 10:00-17:59 hours, with refer-
ence temperatures between 220oC and 300oC, control signals
obtained from the controller and with constant values and fault
values of αKopt between 0.1 and 0.9, αq between ±0.1 l/s and
±0.5 l/s and αHl

between 1.1 and 2.
One of the most important steps when training neural

networks is selecting the set of variables that represent the
data. In this case, the outputs are four classes: no-fault, Kopt

fault, q fault and Hl fault. The inputs are the same that use
the baseline static ANN. For selecting the evolution with time,
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Fig. 2. Real irradiance profiles used for training.

different tests were carried out. Taking the example of variable
z, z(k− i) is the value from i instants before, z̄(k− j : k− i)
is the mean value between instants k − i and k − j and
z̄w(k− j : k− i) is the weighted mean between instants k− i
and k − j. Note that here q is not the actual value but the
one assumed from the sensor measurements since the fault is
unknown. The most relevant sets of inputs are listed below:

• Static ANN (v16): X = [Tin(k), Tout(k), dTout(k)/
dT, Ta(k), I(k), q(k), no(k)]

• ANNs v20: X = [Tin(k), Tout(k), Tout(k− 1), Tout(k−
15), Tout(k − 30), Ta(k), I(k), q(k), q(k − 1), q(k −
15), no(k)]

• ANNs v23: X = [Tin(k), Tout(k), T̄out(k − 5 :
k − 1), T̄out(k − 15 : k − 6), T̄out(k − 30 : k −
16), Ta(k), I(k), q(k), q̄(k − 3 : k − 1), q̄(k − 10 :
k − 4), no(k)]

• ANNs v24: X = [Tin(k), Tout(k), T̄out(k − 5 :
k − 1), T̄out(k − 15 : k − 6), T̄out(k − 30 : k −
16), Ta(k), I(k), Ī(k − 5 : k − 1), Ī(k − 20 : k −
6), q(k), q̄(k − 3 : k − 1), q̄(k − 10 : k − 4), no(k)]

• ANNs v25: X = [Tin(k), T̄in(k − 5 : k − 1), T̄in(k −
20 : k − 6), Tout(k), T̄out(k − 5 : k − 1), T̄out(k − 15 :
k − 6), T̄out(k − 30 : k − 16), Ta(k), I(k), Ī(k − 5 : k −
1), Ī(k − 20 : k − 6), q(k), q̄(k − 3 : k − 1), q̄(k − 10 :
k − 4), no(k)]

• ANNs v26: X = [Tin(k), Tout(k), T̄
w
out(k − 20 : k −

1), Ta(k), I(k), q(k), q̄
w(k − 15 : k − 1), no(k)]

• ANNs v28: X = [T̄in(k − 5 : k − 1), T̄in(k − 20 : k −
6), T̄out(k−5 : k−1), T̄out(k−15 : k−6), T̄out(k−30 :
k − 16), T̄a(k − 5 : k − 1), Ī(k − 5 : k − 1), Ī(k − 20 :
k − 6), q̄(k − 3 : k − 1), q̄(k − 10 : k − 4), no(k)]

• ANNs v29: X = [Tin(k), T̄in(k−5 : k−1), T̄in(k−20 :
k − 6), T̄in(k − 20 : k − 1), Tout(k), T̄out(k − 5 : k −
1), T̄out(k− 15 : k− 6), T̄out(k− 30 : k− 16), T̄out(k−
30 : k − 1), Ta(k), I(k), Ī(k − 5 : k − 1), Ī(k − 20 :
k−6), Ī(k−20 : k−1), q(k), q̄(k−3 : k−1), q̄(k−10 :
k − 4), q̄(k − 10 : k − 1), no(k)]

• ANNs v30: X = [Tin(k), T̄in(k−5 : k−1), T̄in(k−20 :
k − 6), T̄in(k − 30 : k − 21), Tout(k), T̄out(k − 5 : k −
1), T̄out(k− 15 : k− 6), T̄out(k− 30 : k− 16), T̄out(k−
40 : k − 31), Ta(k), I(k), Ī(k − 5 : k − 1), Ī(k − 20 :

TABLE II
ACCURACIES OF THE SELECTED NEURAL NETWORKS IN THE DATASET.

ANN Acc train (%) Acc valid. (%) Acc test (%)
400-200 v16 95.0 94.9 94.8

200-100-50 v20 88.5 88.1 88.1
400-200 v23 89.6 88.9 89.1

49-32-28-12 v24 81.7 81.9 81.7
400-200 v25 91.1 90.8 90.7

200-100-50 v26 89.0 88.5 88.7
400-200 v28 89.8 89.5 89.4

200-100-50 v29 90.6 90.3 90.4
200-100 v30 92.4 92.2 92.0

TABLE III
ACCURACIES AND F1-SCORES FROM SIMULATION.

ANN F1-score (%) Acc (%)Faultless Kopt fault q fault Hl fault
400-200 v16 48.82 55.18 47.34 47.58 49.57

200-100-50 v20 33.23 54.77 44.16 31.41 42.27
400-200 v23 43.07 66.40 46.64 21.64 46.61

49-32-28-12 v24 52.17 60.65 47.06 50.86 52.57
400-200 v25 88.21 82.56 65.53 55.17 73.35

200-100-50 v26 18.01 49.25 42.48 13.46 36.11
400-200 v28 62.74 80.63 59.50 54.55 64.15

200-100-50 v29 74.51 80.08 61.03 56.79 66.75
200-100 v30 45.41 52.03 49.31 43.27 46.79

k−6), Ī(k−30 : k−21), q(k), q̄(k−3 : k−1), q̄(k−10 :
k − 4), q̄(k − 20 : k − 11), no(k)]

For each one of the ANN versions, different architectures
were evaluated. The dataset was randomized, and the repeated
instances were removed, remaining 1192296 data. The ANNs
were trained by splitting the dataset into three subsets: training
set (75%), validation set (10%), and test set (15%). Table
II gathers the best architectures for each version in each
subset, where, e.g., 400-400 indicates that the ANN has two
hidden layers with 400 nodes in the first one and 200 in the
second one. The first one (400-200 v16) is the baseline, which
was trained using a different dataset with constant irradiances
instead of real profiles. This table shows that the results worsen
when considering real variable radiation. The best ANNs are
from versions 25, 28, 29, and 30, the ones that contain mean
values of Tin.

Figures 3 and 4 show the results with a fault of 0.8 in the
optical efficiency occurring at 14:00 with irradiance profile 1.
This is a clear day in which the ANN was perfectly able to
detect the fault before 15:00.

In 5 and 6, profile 4 was used, which is an example of
highly dynamic days with clouds passing by all day long.
In this case, even the control is challenging, judging from
the temperature tracking, and there are nonzero values of the
output corresponding at flow rate and thermal loss from 11:30.
A fault of -0,25 l/s in the flow rate was added at 13:00, and
it was correctly alarmed around 13:15.

The last experiment is shown in figures 7 and 8 and
corresponds to a day with moderate irradiance and a big cloud
passing by. A 1.2 fault in thermal loss coefficient was added
at 12:00 and alarmed before 13:00.
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temperature.
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V. DISCUSSION

In this work, different neural networks were trained and
tested, and different types of inputs were analyzed. The results
reveal that the neural networks with a higher number of delays
in the inputs and with delays in either the outlet or inlet
temperatures perform better than the rest of the ANNs applied.
Although the baseline ANN from the previous article presented
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Fig. 5. Temperatures, irradiance and flow rate evolution from the second
experiment with test profile 4 and a fault of -0.25 l/s in the flow rate after
hour 13:00. The discontinuous line shows the non-faulty outlet temperature.
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Fig. 6. Neural network output from the second experiment with test profile
4 and a fault of -0.25 l/s in the flow rate after hour 13:00.
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Fig. 7. Temperatures, irradiance and flow rate evolution from the third
experiment with test profile 9 and a fault of 1.2 in the thermal loses after
hour 12:00. The discontinuous line shows the non-faulty outlet temperature.

higher accuracy with clear days, the study proves that its
behavior worsens when considering real cloudy days. This
work demonstrates the need to consider the dynamics of the
system and include past data.

VI. CONCLUSIONS

This paper addresses the problem of FDI in PTC plants
by using artificial neural networks with knowledge of present
and past information. The proposed method can detect and
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Fig. 8. Neural network output from the third experiment with test profile 9
and a fault of 1.2 in the thermal loses after hour 12:00.



isolate three types of faults in the collector area of the field.
In addition, the use of past data from the plant enables the
FDI system to detect faults even on highly variable days with
extreme cloud conditions.

The method was validated by batches of simulations on the
ACUREX plant. The proposed ANN outperforms the baseline
ANN from previous work, obtaining an accuracy of 73.35%
and an F1-score of 88.21% for the non-faulty case. As the
baseline ANN showed better results for clear synthetic days,
future development will be to study their performances in
different situations and access possible combinations of these
methods to reach a trade-off. In addition, different techniques
will be examined and compared, and the probability of failure
will be analyzed.
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