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Abstract: This paper deals with the identification of a nonlinear plant by means of a
neural network (NN) modelling approximation. The problem of neural identification
is tackled using a static NN in a NARX configuration. A method is proposed to
obtain the number of past values needed to feed the network. The on-line adaptation
of the model and other issues are discussed. In order to show the benefits that can be
achieved with the proposed methods, the NN model is used within a Model Predictive
Control (MPC) framework. The MPC scheme uses the prediction of the output of
the system calculated as the sum of the free response (obtained using the nonlinear
NN model) and the forced response (obtained linearizing around the current operating
point) to optimize a performance index. The control scheme has been applied and

tested in a solar power plant.
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1. INTRODUCTION

A key feature of the MPC schema is the necessity
of a reliable model of the plant being controlled.
The methodology of MPC for linear plants has
to be changed when coping with nonlinear be-
haviour, because the superposition principle does
not hold. Two aspects have to be revised: the
model used for the output prediction and the op-
timization procedure to obtain the desired control
signal.

Model for nonlinear output prediction— The
nonlinear behaviour of the plant can be taken into
account by using a nonlinear model. Neural net-
work approaches constitute an adequate way to
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obtain such kind of models. They have been ap-
plied to the identification of dynamical systems
(Narendra and Parthasarathy, 1990) and used in
a variety of model based controllers. When using
static neural networks to predict future outputs
of a system based on input-output information a
problem is to determine the number of past values
that the network needs to construct the predic-
tion. A new selection method is proposed in this

paper.

Off-line identification allows to develop and test
a model before using it. It has the disadvantage
that a large amount of data has to be stored. Se-
lection of training examples among the available
data has the benefits of reducing the training time
and improving generalization. A simple procedure
to select examples is commented in the paper.

After an off-line training phase, the network needs
further on-line training. Fast on-line adaptation is
achieved adjusting only a sub-network that faces
small discrepancies and temporal changes.



Optimization procedure— When nonlinear
models are used within a MPC framework, com-
putationally demanding and generally nonconvex
nonlinear programs (NLP) arise (Camacho and
Bordodns, 1995). Some algorithms have appeared
in the literature to obtain less computationally
demanding algorithms (de Oliveira and Morari,
1994). In this paper, the approach (proposed by
authors in (Camacho and Berenguel, 1994)) used
is based on a generalized predictive control (GPC)
strategy. When coping with linear systems, a nat-
ural division of the system response in free and
forced response can be obtained. The free response
is interpreted here as the output obtained if the
system input is maintained at a constant value
during certain control and prediction horizons. If
the deviation from linearity is not too large, some
approximations can be made, which acknowledge
that certain systems characteristics change from
operating point to operating point, but assuming
linearity in the neighborhood of a specific oper-
ating point. The algorithm used in this paper
relies on the allowance of an adequate nonlinear
model of the plant, obtained using static neural
networks.

The paper is organized as follows: in section 2
a the neural identification problem is presented
along with the proposed algorithm for selecting
the inputs. Section 3 is devoted to describe the
solar plant. In section 4 the controller structure
which uses the neural model is defined. Finally,
some issues regarding the application to the dis-
tributed collector field are discussed, including
plant results.

2. NEURAL IDENTIFICATION

The problem we are interested in is the identifica-
tion of nonlinear systems of the form:

YP(k+1) h(ypky, - - YPk-L)»
Uy " U(k—M)s

(1)

where u(;) is the system’s input vector at time k,

YP(k) is the output vector, p(x) is a vector of mea-
surable disturbances and h is an unknown nonlin-
ear function.

p{k):"'P(k——N)}

For the identification of plant (1), a neural net-
work model like the one depicted in Fig. 1 can
be used. Tapped Delay Lines (TDL) provide past
values of the variables. This structure is called
NARX model. The prediction is given by:

j(k+1) fypky - YP(k-P);
Ulk), * ** U(k=Q)s

P(k)> " P(k—R)s Wy)
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where Wy is a vector containing all the parame-
ters in the neural network.

Two problems have to be solved. First of all,
a model has to be selected among the family of
NARX models. This is the model selection prob-
lem and includes selecting the number of nodes.
connections, etc. of the NN. A second step is to
give a value to the adjustable parameters of the
model. This is called the parameter estimation
problem. The model selection problem is tackled
here in two steps: first the inputs that feed the
network are selected, later, the neural structure is
determined.

2.1 Selection of past values as network inputs.

The temporal domain is considered treating past
values of variables as different inputs and feed-
ing them to a static network. Taking an upper
bound of the order (when it is unknown) can lead
to inefficient models due to the large number of
inputs needed. A new method is proposed, based
on the descent in the gradient needed to explain
the observed output when a new TDL is added.
The method chooses the variable that provides the
largest descent at each stage, determining P, @
and R in (2) so as to obtain a good approxima-
tion to the "supposed true” plant (1). For real
processes, the larger P, @ and R , the more accu-
rate the approximation can be made. It is clear,
however, that an arbitrary large number of inputs
can turn our problem insolvable. Furthermore,
in order to avoid over-parametrization it is conve-
nient to keep the number of adjustable parameters
as small as possible.

To expose the idea that supports the method, let
us assume that the components of vector x

XLMN(k) = [yP(k). " YP(k—L)s
Ulk)s """ U(k=M)

Pk - " P(k=N)) (3)

suffice to construct the prediction as g(k + 1) =
f(xLmn(k))- If one tries to approximate function
f using an input vector X pgr, with dimension less
than dim(xr ar,nv), then it is likely to find a couple
of values for x s v that produces the same value
for xpor- In this case, the model based on xpgr
will yield the same prediction and the real plant
will give different outputs. From the point of view
of the model, the output of the system is multi-
valued. The number of past values of u, yp and p
can be increased until the ambiguity in the output
of the model disappears. For a couple of instan-
cies of vector xpgr, such as £, €2 the gradient of
function f along the line that joins both points

can be estimated as | Viaof |= {l%;:—;f-il-, provided
that the distance ||€! — £2| is small enough and



Fig. 1. NARX model (left) and MLP with 2 hidden
layers (right).

being v* the correct value for function f at points
€ withi = 1,2.

It is easy to see that, for a given £!,£2 pair, the
value of | Vi2f | can be decreased augmenting
both vectors with some new past value that ex-
plains the difference in the values of the output.
With this idea in mind, the algorithm can be ex-
pressed as follows: O Gather a set of input-output
data from the plant. This set should be informative
enough of the dynamical behaviour of the plant in
most relevant operating points.

O Begin with small values for P, Q and R.

O Create a set of exemplars consisting of pairs in the
form z := (xpgr, v), where xpghr is the model’s input
vector defined in (2), and v is the correct output for
said input. Let us call this set Apgr.

O For each pair z', 2% in Apggr.

1. Compute d. = ||z' — z°||.

2. If d: < A estimate the gradient. Store the z',
z* pair and the value calculated for the gradient in a
separate set BpgRr.

O Increase P, Q and R in one unit separately and
choose the combination that produces the largest de-
scent in the gradient for each pair in Bpgg.

O If the criteria for stopping is met (see discussion
below), then finish, otherwise create a new set of ex-
emplars with the new values of P, Q and R and repeat
the procedure.

The parameter A is the largest distance between
pairs in the input space to be considered close
enough to compute the gradient. If all signals are
normalized to the [—1,1] interval, then A can be
taken as A = y/dim(z)d?, where 4 defines a grid
in the input space that can be viewed as a fraction
of the whole scale for the normalized variables.

The algorithm can be stopped according to some
criteria. One could be when a maximum pre-
specified number of inputs is reached. Another
is when the maximum value of the gradients is
below some threshold. The algorithm can be run
a number of times and develop the model for each
selection, taking finally the one that gives the best
complexity /performance trade-off.

2.2 Neural structure selection.

In this paper, a 2-hidden-layer net is used as the
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one shown in Fig. 1. The nonlinear activation is
given by the function o(s) = {55 . Bias weights
are set up as connections to nodes with constant
values, as shown in Fig. 1. Direct connections
from the input to the output layer provide a means
to approximate linear mappings easily. This struc-
ture is capable of approximating any continuous
non-linear mapping provided that a sufficiently
large number of nodes is used. The number of
nodes is determined training different networks
and determining the approximation and general-
ization capabilities using cross-validation. If the
results are not good enough, the number of nodes
is increased and the procedure repeated.

2.3 Selection of training set.

Training a neural network to approximate an un-
known input-output relation from examples typ-
ically involves a large number of cycles through
the set of available examples. For this reason it is
convenient to have a small training set (TS) with
the higher information content. When the input-
output patterns or exemplars come from a system
under control the variables are highly correlated
to each others and the information content is low.
The use of some technique to select exemplars to
be included in the TS has the beneficial side-effect
of improving generalization removing redundant
patterns.

For the purpose of training a neural network to
identify the solar plant, a procedure has been de-
vised to extract a compact yet informative enough
data set. The main idea behind the method is
that one should include in the TS only input-
output patterns whose distance to other patterns
already in the set is large enough. The distance
can be taken as the Euclidean distance in the
input-output space, but, since not all signals af-
fect the output the same extent, it is more con-
venient to use some weighted metric, defined as
vl = vIWTWyv, with v = z; — 2z;, being
z = (x,v) a point in the input-output space. The
network’s input is x and v is the correct prediction
for such input. Matrix W allows the more rele-
vant components to be better taken into account
using a priort knowledge about the plant.

The method followed can be summarized as fol-
lows:

O Gather all available input-output data in a set of
candidate examples (CE set).

O Take the first instance z in the CE set and add it
to the set of selected patterns (SP set).

O For each z in the CE set.

1. Compute d:= Y(z,SP) := mingesp ||z — 0w
minimum distance from z to an element of SP.

2. If d > dmin include z in SP.
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Fig. 2. Nonlinear MPC scheme using a linear model
for the forced response and a neural network
for the free response.

This method is simple to implement and gives
good results. The only parameter one has to
choose is the minimum distance between patterns
in the SP set. This value can be approximated by
trial and error beginning with a high value and
reducing it using cross-validation to check gener-
alization.

3. BRIEF DESCRIPTION OF THE PLANT

The ACUREX distributed collector field facility
is at the Plataforma Solar de Almeria (Spain). It
consists of a series of parabolic mirrors that reflect
solar radiation onto a pipe where oil gets heated
while circulating. A pump extracts cold oil from
the bottom of an storage tank injecting it on the
field. At the output of the collector field the oil
enters the upper part of the storage tank.

The objective of the control system is to maintain
the outlet oil temperature at a desired level in
spite of disturbances such as changes in the solar
irradiance level (caused by clouds), mirrors reflec-
tivity or inlet oil temperature changes. The only
manipulable variable is the flow of oil.

3.1 Plant dynamics due to input signal.

Step-response and PRBS (Pseudo Random Binary
Sequence) tests were carried out at the plant in an
open loop configuration to obtain low order lin-
ear models of the field for control purposes. The
plant exhibits a number of antiresonance modes
(frequencies at which the magnitude of the fre-
quency response changes strongly). High order
linear models have been developed to take into
account these modes (Camacho et al., 1994). For
control purposes, the distributed collector field
can be approximated by a linear system when con-
sidering small disturbances. This is a good ap-
proximation if only low frequencies are excited. If
this is not the case, as happens when more de-
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mands are made in the plant response time, the
anti-resonance modes (unmodeled dynamics) may
originate an unacceptable oscillatory behaviour.

4. APPLICATION TO THE SOLAR PLANT

In the standard formulation of GPC, linear
CARIMA models can be used to model the plant,
yielding a linear optimization problem (Camacho
and Bordéns 1995). The optimal GPC control ac-
tions are calculated by computing a vector u of
future control increments that minimizes the ob-
jective function.

In order to solve the optimization problem for
nonlinear plants, the control structure presented
in Fig. 2 can be used. The free response is cal-
culated by using a nonlinear prediction model of
the system and the forced response using a lin-
earization model around the operating point. This
scheme allows to calculate the incremental control
signal u in the standard way, without the need for
nonlinear optimizations.

Several models have to be developed for the pre-
diction of the free and forced response of the sys-
tem subject to different disturbances. Some mod-
els use physical knowledge about the processes
and do not need but some parameter estimation.

The free response of the plant is due to little
known non-linear processes and black box mod-
elling is of use. The algorithms exposed in previ-
ous sections have been applied using input-output
data previously obtained from the plant. For the
purpose of training a neural network to identify
the plant, the procedure mentioned in section 2
was devised to extract a compact yet informative
enough data set. Using this data set, the neural
structure, the number of past inputs, and the net-
work adjustable parameters were selected. In the
following, the development of the different sub-
models is exposed.

4.1 Neural structure selection.

For the identification of the solar plant, a small
network of 10 input nodes, 6 nodes in the first
hidden layer, 5 nodes in the second hidden layer
and a linear output node gives good results. This
was found using a procedure that increases the
network size, trial after trial until the performance
does not increase significantly.

The procedure was carried out using two disjoint
sets: one for training and the other for checking
the results after some epochs. The results ob-
tained for some of the networks tested are:



network  Erms (TS) Erms (VS)
10-4-4-1 0.016 0.024
10-5-4-1 0.015 0.020
10-5-5-1 0.012 0.019
10-6-5-1 0.009 0.018
10-7-6-1 0.008 0.018

the second and third columns indicate the final
root-mean-squared error in the training set (TS)
and in the validation set (VS). The network struc-
ture is denoted in the first column by the number
of nodes in each layer. The values in said table
correspond to an average over several runs since
the initial random state of the net can influence
the result. The number of cycles is different for
each run, since training was stopped to avoid over-
training.

4.2 Selection of inputs.

For the prediction of the free response, the vari-
ables of interest are:

O Input variable: oil flow. The number of past values
is denoted by P.

O Qutput variable: output temperature. The number
of past values is denoted by Q.

O Perturbations: inlet temperature and solar radia-
tion. The number of past values are denoted by R;
and Rz, respectively.

In Fig. 3 the procedure is exemplified. Each box
in said figure represents a different Bpgrirs set.
It is clear that the proposed algorithm avoids the
exploring of the whole tree. The value of § was
taken as a one percent of the full-scale range for
the normalized variables, that is § = 0.01. The
results obtained with the proposed algorithm for
the first stage are:

P Q@ R R F €rms TS  Erms VS
2 1 41 1 79% 0.0112 0.0140
I 2 9 1 82% 00115 0.0150
1 1 2 1 89% 0.0054 0.0077
1 1 1 2 8 % 0.0115 0.0150

the 5th column shows the averaged gradient re-
duction. These results where tested training all
intermediate models, resulting in the approxima-
tion errors given in columns 6 (TS) and 7 (VS).

4.3 Selection of the training set.

The application of the algorithm to the selection
of a TS for the identification of the solar power
plant gave very good results. The method pro-
vided a TS with just 30% of the total number of
examples, reducing thus the training time. More-
over, the generalization capacity of the resulting
network was tested after training and compared
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Fig. 3. The algorithm for the selection of inputs in
its 3 first stages.

with another network that was trained using the
whole data set. The comparison revealed that the
pruning of redundant examples lead to a better
generalization.

4.4 On-line adaptation.

On-line adaptation is desirable to counter tempo-
ral changes and model mismatch due to incom-
plete learning. Adapting a neural net with a large
number of connections needs a lot of computing
time. In order to achieve on-line adaptation with
just a few adaptable parameters, a small subnet
was added to the previously trained one. In the
forward path of backpropagation (BP), both nets
provide an output that are added at the output
node. In the feedback pass of BP only the small
subnet is adapted. The structure of the subnet is
fixed and selected ad hoc, having 10 input nodes,
4 hidden nodes and sharing the output node with
the non adaptable network.

4.5 Disturbance prediction models.

Some studies have been performed (Camacho et
al., 1992) to relate changes in outlet oil temper-
ature to inlet oil temperature variations, but the
benefits provided in this control scheme were not
considered to justify the added complexity and
so, the inlet temperature has been considered con-
stant along the prediction horizon in the optimiza-
tion phase of the algorithm.

Solar radiation changes due to its daily cycle
and to passing clouds. The prediction of passing
clouds is very complex and so, an approximation
based on the consideration of a clear-day oper-
ation has been adopted (Berenguel, 1996). The
predicted values are used in the neural network
nonlinear model to calculate the free response.
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Fig. 4. Test with the neural nonlinear GPC
controller (03/07/96).

4.6 Forced response calculation.

If set point changes are small (less than 20°C), the
hypothesis of operation around an operating point
in the forced response calculation is a right one and
linear models in usual CARIMA formulations can
be used. The CARIMA models are obtained from
the PRBS identification data for operation about
medium flows. Theoretically, this model should
change for different operating points. In this par-
ticular case, due to the large influence of solar
radiation in the value of the control signal, the
contribution of the linear part in the control sig-
nal is smaller than that of the free response.

4.7 Plant results.

The MPC control scheme has been applied to
the control of the distributed solar collector field
ACUREX.

Fig 4 shows the results obtained in a day
with scattered and passing clouds which produce
changes in solar radiation that disturbed the out-
let oil temperature level during the operation.
The behaviour of the controlled system is very ac-
ceptable, with good set point tracking and distur-
bance rejection characteristics. The results ob-
tained with this controller have been compared
with other control approaches previously tested at
the plant, showing very good performance charac-
teristics.
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5. CONCLUSIONS

The identification of a complex non-linear system
subject to disturbances have been carried out us-
ing neural networks. As a part of the process,
the model selection problem has been tackled us-
ing the NARX structure and a simple algorithm
to determine the number of TDLs needed for it.
The model has been used in a model-based predic-
tive control scheme. The control algorithm uses
the neural network model to predict the free re-
sponse of the plant and a linear incremental model
to compute the optimal control action.

Aspects of the neural identification such as the
selection of training samples and the realization
of fast, on-line adaptation have been commented.
Finally, results have been presented showing the
control performance in the real plant.
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