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Abstract: The selection of input variables plays a crucial role when modelling time series. For
nonlinear models there are not well developed techniques such as AIC and other criteria that
work with linear models. In the case of Short Term Load Forecasting (STLF) generalization
is greatly influenced by such selection. In this paper two approaches are compared using
real data from a Spanish utility company. The models used are neural networks although the
algorithms can be used with other nonlinear models. The experiments show that that input
variable selection affects the performance of forecasting models and thus should be treated
as a generalization problem.
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1. INTRODUCTION

Sometimes a model is needed to forecast the future
behavior of a time series. Past values of the time series
and past or forecasted values of other variables can
potentially be used as inputs of the model. When a
group of (mostly) independent variables are available,
variable selection has to be performed in order to avoid
using variables that have little influence on the forecast
and, at the same time, do not neglect useful ones.

Forward inclusion and Backward elimination by means
of correlation matrix are widely used methods. Al-
though it has been used successfully in nonlinear sce-
narios, it has to be noted that correlation seeks for
almost linear relationships among variables. When
other relationships are present, such as quadratic, the
correlation test can yield wrong results.

A brute force approach can in some cases provide the
best results. Either by step-wise inclusion or deletion
of variables at each stage a full model has to be
developed. The performance of the model is tested
using some control data and allows to determine the
best set of variables.

This method has a number of obvious drawbacks.
First, it is very time consuming, and does not scale
well with both the size/complexity of the model

and the number of potential variables. Second, large
amounts of control data are needed, otherwise the
improvements in the variable selection procedure may
not have correspondence in the later use of the model.
In many situations data is scarce disallowing the use
of such method.

Short term electrical load forecasting (STELF) is a
task in which nonlinearities, model complexity and
scarce data are combined. These problems have been
addressed in (Yuan and Fine, 1998). The difference
index presented there is used with some modifications
in this paper and compared against the brute force
approach. A comparison is carried out using actual
data from a Spanish utility company. Generalization
issues are tackled with special care in the experiments
that simulate the use of the models under different
conditions.

The algorithms for variable selection are presented
next. The forecasting problem and the available data
used for the comparison are shown in section 3. Fol-
lowing this, the results will be detailed and the conclu-
sions presented.
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2. INPUT VARIABLE SELECTION
ALGORITHMS

Two algorithms for variable selection will be de-
scribed here. The first one consists on step-wise in-
clusion of variables in neural models.

In both cases the available past data is split in two sets:
one for constructing models and the other for testing
their goodness. Evaluation can be seen as a function
that assigns a figure of merit to each model, allowing
their classification. Let us denote by E (M) the value
of the evaluation function for model M.

Also, the set of potential variables is first pruned re-
moving variables that have a clear quasi-linear rela-
tionship among them. Let us denote by n the number
of remaining potential variables. Our problem is to
decide which of the potential variables should be used
as inputs in the model.

2.1 Step-wise inclusion of variables

This strategy adds one variable at a time to the set of
selected variables. This variable is selected probing all
possible models that result from the addition of any
variable of the set of potential variables.

The first stage of the selection algorithm is the con-
struction models M1

1 to M1
n where de superindex

denotes the number of input variables used by the
model and the subindex is the variable last added to
that model. The model that achieves the best perfor-
mance indicates which variable should be first se-
lected. Mathematically v1 = argmin j E (M1

j ). Variable

v1 is then eliminated from the set of potential variables
and included in the set of selected ones.

In a second step n−1 models with two input variables
are considered and a new variable selected.

The procedure can go on forever because theoretically
a model with an extra variable can perform as well as
the original model. We know however that generaliza-
tion degrades when a unnecessary complexity is used.

The problem of when to stop is sometimes solved
plotting the goodness of the successive models against
the number of variables. Small changes are expected
when including dispensable variables whereas signifi-
cant improvements occur when an important variable
is added. For this reason the curve has a larger slope
when the first variables are added and flattens succes-
sively. The elbow of the curve has been many times
signaled as the correct number of variables. As we will
see in the experiments, this choice is coupled with the
performance function considered.

When using neural networks as models other consid-
erations have to be made. First of all, the effects of
random initial values of weights and training stopping
criterion cause networks with the same inputs and

same training data to perform differently. Second, the
number of nodes/connections also affect the capacity
of resulting model. To avoid these problem a number
of networks should be generated and used as an en-
semble averaging their outputs. The networks can be
trained using different algorithms and do not have to
share the same structure or size.

2.2 Index based selection

The second algorithm to be compared here is based
on a selection index that can be obtained directly
from data without the need of constructing any model.
The index proposed in (Yuan and Fine, 1998), is a
difference-based estimator of residual variance. We
will use it here with minor modifications.

Given a set of available data formed by a pairs of input
vectors and target values (xi, ti). The input vector is
composed of n different variables. Let us denote by
xi, j the j-th component of the i-th data pair.

For each potential input variable j an indication of
its usefulness can be obtained by means of index
I j. This index measures the changes in the target
associated with changes in the j-th variable. To do so,
all pairs (xi, j, ti) of variable and target are considered
and reordered so that the new pairs (xp, j, tp) verify that
xp, j ≤ xq, j for any p < q.

The index is then calculated as

I j =
N

∑
h=1

∣∣∣t(h+1) − t(h)

∣∣∣ (1)

where N is the number of data pairs.

The way the index is used for selection is described
now. Potential input variables are first divided among
groups, containing each group variables that are cor-
related. The index is obtained for all the variables in
each group. The one with lower index is considered
the best representative of the group and is selected.

Proceeding in this manner, the chance of selecting
redundant (“collinear”) variables is ruled out.

This procedure does not construct any model, speed-
ing up the selection process.

2.3 Step-wise index based selection

We propose a modification of the index based proce-
dure. The method consists on calculating the differ-
ence index for all variables as before. Now, after the
first variable has been selected it is eliminated from the
set of potential input variables. A model is constructed
using this one variable. The output of the model t̂1 is
an estimation of the target variable. We use the error
of the model (the residuals) as a new target: t2 = t −
t̂1. New difference index are then calculated for the
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elements of the set of potential input variables, and
the process repeats itself.

The number of models to be constructed is less than in
the brute force approach outlined in section 2.1.

3. FORECASTING PROBLEM

The problem of short term load forecasting refers to
the prediction of the energy demand within a horizon
of 24 to 48 hours. Different approaches have been used
for this problem ranging from linear to neural nets and
fuzzy sets. Many papers can be found in the literature,
especially in the IEEE Transactions on Power Systems
(see for instance (Chow and Leung, 1997)).

In some cases (Arahal and Camacho, 2001), the hourly
load forecasting problem is divided in two: the predic-
tion of the integrated demand for a day and the nor-
malized hourly load curve of the day. Normalized load
curves are used to distribute the integrated predicted
demand among the 24 hours of the day. In this paper
the forecasting of the load curve of the day is not con-
sidered. The algorithms under consideration attempt
to predict the total (i.e. integrated) energy demanded
over 24 hours for the next two or three days.

Some notation is needed in order to present the algo-
rithm. The hourly load ld

h demanded at hour h of a day
d is usually the variable used for electrical companies
for forecasting purposes. However, the utility used as
a test bed is mainly interested in predicting the inte-
grated load for a day; that is:

c( j) =
h=24

∑
h=1

l j
h

(2)

This integrated load will be referred to as "daily load".
The sequence of values {c( j)} for j = 0,1, ...,nd
constitutes the data base of electrical load. Similar
data base exists for the temperatures measured in the
region where the electrical energy is supplied and for
other variables of interest.

Suppose that we wish to predict the daily load for day
k. Different cases appear:

(1) If k is a Monday, the prediction has to be made
the previous Friday k − 3. The advance in the
forecast is d = 3 days.

(2) If k is a Sunday, the prediction has to be made
the previous Friday k − 2. The advance in the
forecast is d = 2 days.

(3) If k is the day after a holiday, the prediction has
to be made the working day before the holiday,
like in the previous case, except in Mondays
following a holiday in Friday, where the advance
is d = 4 days.

(4) In the rest of the cases the prediction is done the
previous day k− 1. The advance in the forecast
is d = 1 day.

From the cases above it is clear that the values of c( j)
are known for all j < k− d. These past loads can be
used to generate a prediction ĉ(k). The hat allows to
distinguish between the prediction and the actual value
of the load c(k), which is only known the day k +1.

The objective of a forecaster is to produce ĉ(k) for
some days ahead (see above cases). A figure of merit
often used is the prediction error defined as:

ep(k) = 100
c(k)− ĉ(k)

c(k)
(3)

this quantity can be measured after day k and is an
indication of how good the prediction was. Usually
a set of past days with known load demand are used
to evaluate the goodness of a predictor using the root
mean squared error

Erms =

√
1
nd

nd

∑
k=1

ep2(k) (4)

3.1 Data set

The data has been supplied by a Spanish electrical
company that does not wish to be further identified.
It consists of hourly power demand for a vast region
during several years (see (Pavón and Arahal, 2000)).
In order to maintain the confidentiality of the data, the
plots given in the paper correspond to a unidentified
period of time and the vertical scale is normalized.

The available data set has been split in three parts (see
figure 1):

• Working set.Contains four years of dayly load.
It would be split in two disjoint sets, namely
Construction Set (CS) used for the training of the
neural networks and Validation Set (VS) used to
signal when to stop the training of the networks
and to select the most appropriate nets among a
group of nets.

• Test set (TS). Contains one year of data which is
posterior to WS that will be used to compare the
different selection algorithms.

The selection of the variables of the algorithm will be
carried out using just the data in WS. On the other
hand, the selection algorithms will be tested using
data from the TS. It has to be remarked that data
from TS will not be used (or even disclosed) after the
algorithms have chosen their set of input variables.

4. EXPERIMENTAL RESULTS

The variables considered as potential inputs are:

v1 = ctdamt Load of the previous day of the same
type.

v2 = m7da Average over past seven days.
v3 = m14da Average over past fourteen days.
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Fig. 1. Normalized electrical daily load in the working set WS=CS+VS and in the testing set TS.

v4 = mdaa Average over a week lagged a year.
v5 = mm2ma Average over a month lagged two months.
v6 = mm3ma Average over a month lagged three

months.
v7 = mm4ma Average over a month lagged four months.
v8 = mm6ma Average over a month lagged six months.
v9 = t Forecasted average daily temperature.
v10 = mt2da Average temperature over past two days.
v11 = td Type of day: 0-holiday {1 – 7 } Sunday

through Saturday.
v12 = da Day of the year.

In order to test the selection of input variables a
number of models have been obtained. Each model
differs just in the input vector used. The models are
neural networks of one-hidden layer with 15 nodes
trained with the Levenberg-Marquardt algorithm in
MATLAB.

Training is performed using just data from CS to
adjust the networks parameters. The Erms in the VS
is monitored to stop the training iterations. The CS
consists of a 20% of the data points in WS randomly
selected. The VS is the remaining 80%.

Since the initial weights of the network can affect the
results 50 networks are constructed instead of just one.

Denoting by JCS the Erms in the CS and by JV S Erms in
the V S a new figure of merit is introduced

JWS = 0.2JCS +0.8JV S (5)

The 15 nets that provide the smaller value of JWS are
just considered. The results shown in the following are
an average of such 15 nets.

The number of possible variables is twelve, so it would
be necessary to generate 12+11+ ...+2 = 78 differ-
ent models to get the complete tree of input variables
relevance. This is excessively time consuming.

4.1 Step-wise inclusion

The next table shows the average value of JWS for the
best 15 nets out of 50. Each row correspond to an input
variable and each column to a stage of the inclusion
algorithm.

It can be seen that in the first stage (first column)
all input variables are considered one by one. The
smaller value appears in the first row, consequently v1
is selected from the set of potential variables and used
in subsequent stages.

In the second stage v1 is combined one by one with
the rest of potential variables. The smaller value of
JWS appears in the last row, corresponding to v11.
This is thus the second variable to be selected. It is
interesting to note that, at this stage, all models yield
better performance that in the previous, as expected
(see section 2.1).

1 2 3 4 5
v1 4.94
v5 8.31 4.68 4.23 3.78 3.69
v6 8.94 4.81 4.55 3.97 3.72
v9 7.57 4.78 3.99 3.73
v10 7.09 4.69 3.97
v11 7.21 4.65

Table 1. JWS for the different models at each stage of
the selection method.

Using this method the variables are selected in this
order: v1, v11, v10, v9 and v5

4.2 Index based selection

Using linear correlation matrix it is possible to reduce
the number of variables analyzed making groups of
similar variables as commented above. Doing so the
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number of variables can be reduced to four v1 =
ctdamt, v4mdaa, v9 = t and v11 = td. These variables
have probed as the best variables from their groups.

It has to be commented that this method and the next
have a practical problem with variables that take dis-
crete values such as td. For this reason da is normally
selected by this method. However, in order to compare
with the previous one td has been selected instead of
da.

The index is calculated for each of the above pre-
selected variables using data of WS. The results are
shown in the next table.

v1 v4 v9 v11
20.64 37.58 32.96 36.03

Table 2. Values of I for the pre-selected variables.

4.3 Step-wise index based selection

The second index based method creates intermediate
models with input variables elected via the I j. The
results are shown in the next table. Just the significant
portion of the table is shown for the sake of clarity of
presentation.

1 2 3 4 5
v1 21.2
v2 31.6 23.8 21.0 21.3 17.6
v3 33.5 22.6 20.6
v8 34.2 23.5 21.0 20.9 17.4
v9 32.3 22.4 20.6 20.6
v11 36.4 21.9

Table 3. Index for the different variables at each stage
of the third selection method.

In the first stage the variable with lower index is v1
and thus is selected. Similarly the rest of variables
considered are ordered yielding the sequence: v1, v11,
v3, v9 and v2.

5. COMPARISON

A different way of looking at the results of the the
different algorithms is to test the improvements (if
there is any) in the models when a new input variable
is added.

In figures 2, 3 and 4 the average value of JCS (dark)
and JV S (fair gray) is plotted for the three selection
methods against the number of input variables.

According to the two first methods the best results are
obtained with five input variables. The third method
suggests that four variables are best.

We have to keep in mind that these selection has
been performed using past data. The goodness of the
models when confronted with new data has yet to be
tested. To this end we disclose the TS set and use every

Fig. 2. JCS (dark) and JV S (fair gray) for the models
derived of the first selection method.

Fig. 3. JCS (dark) and JV S (fair gray) for the models
derived of the second selection method.

Fig. 4. JCS (dark) and JV S (fair gray) for the models
derived of the third selection method.

model to forecast in this new conditions. This test is a
though one since no additional training was performed
and the TS set span one whole year in the future.

For each model, the above selected 15 nets are used
with the new data set, obtaining Erms in the usual
way. The average of these root mean squared errors
is JT S, which is plotted in figure 5. The square mark
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correspond to method 1, the triangle to method 2 and
the circle to method 3.
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Fig. 5. JT S versus the number of input variables for
each model using variables selected by the first
method (squares), the second (triangles) and the
third method (circles).

It can be seen that care has to be taken since the
best results are actually obtained with just three input
variables. It is also interesting to notice that for four
variables the three methods obtain very close and
acceptable solutions.

A conclusion we draw in the light of this comparison
is that index-based input variable selection is easy to
perform and less time consuming and can (as in this
case) lead to successful selection.

Also, it is worth noting that the way the neural nets
have been trained and selected greatly affects general-
ization. At the time of closing this draft version we
have yet no complete results on how this selection
should be performed so as to avoid (as much as that
is possible) the mismatch between E (M) and JT S. For
instance, prior to the currently used evaluation func-
tion other percentages of CS and VS where used with
poorer results.

It seems that the first index-based methods avoids
the overparameterization trap by using geometrical
information whereas model-based selection methods
need to be very careful in this respect.

6. CONCLUSIONS

Three methods for input variable selection have been
compared using real data in the problem of short term
load forecasting and the problems associated with
each approach commented.

From the results given it is clear that input variable se-
lection can seriously affect generalization. Moreover,
it has been shown that the problem of input variable
selection, neural model assessment and generalization
are coupled.

Further research will be aimed at developing neural
model testing procedures that would select nets that
have the best generalization capabilities.
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