60 research outputs found

    Mixed Variational Inequality Interval-valued Problem: Theorems of Existence of Solutions

    Get PDF
    In this article, our efforts focus on finding the conditions for the existence of solutions of Mixed Stampacchia Variational Inequality Interval-valued Problem on Hadamard manifolds with monotonicity assumption by using KKM mappings. Conditions that allow us to prove the existence of equilibrium points in a market of perfect competition. We will identify solutions of Stampacchia variational problem and optimization problem with the interval-valued convex objective function, improving on previous results in the literature. We will illustrate the main results obtained with some examples and numerical results

    Necessary and Sufficient Optimality Conditions for Vector Equilibrium Problems on Hadamard Manifolds

    Get PDF
    The aim of this paper is to show the existence and attainability of Karush–Kuhn–Tucker optimality conditions for weakly efficient Pareto points for vector equilibrium problems with the addition of constraints in the novel context of Hadamard manifolds, as opposed to the classical examples of Banach, normed or Hausdorff spaces. More specifically, classical necessary and sufficient conditions for weakly efficient Pareto points to the constrained vector optimization problem are presented. The results described in this article generalize results obtained by Gong (2008) andWei and Gong (2010) and Feng and Qiu (2014) from Hausdorff topological vector spaces, real normed spaces, and real Banach spaces to Hadamard manifolds, respectively. This is done using a notion of Riemannian symmetric spaces of a noncompact type as special Hadarmard manifolds

    Necessary and Sufficient Second-Order Optimality Conditions on Hadamard Manifolds

    Get PDF
    This work is intended to lead a study of necessary and sufficient optimality conditions for scalar optimization problems on Hadamard manifolds. In the context of this geometry, we obtain and present new function types characterized by the property of having all their second-order stationary points be global minimums. In order to do so, we extend the concept convexity in Euclidean space to a more general notion of invexity on Hadamard manifolds. This is done employing notions of second-order directional derivatives, second-order pseudoinvexity functions, and the second-order Karush-Kuhn-Tucker-pseudoinvexity problem. Thus, we prove that every second-order stationary point is a global minimum if and only if the problem is either second-order pseudoinvex or second-order KKT-pseudoinvex depending on whether the problem regards unconstrained or constrained scalar optimization, respectively. This result has not been presented in the literature before. Finally, examples of these new characterizations are provided in the context of "Higgs Boson like" potentials, among others

    Solutions of Optimization Problems on Hadamard Manifolds with Lipschitz Functions

    Get PDF
    The aims of this paper are twofold. First, it is shown, for the first time, which types of nonsmooth functions are characterized by all vector critical points as being efficient or weakly efficient solutions of vector optimization problems in constrained and unconstrained scenarios on Hadamard manifolds. This implies the need to extend different concepts, such as the Karush-Kuhn-Tucker vector critical points and generalized invexity functions, to Hadamard manifolds. The relationships between these quantities are clarified through a great number of explanatory examples. Second, we present an economic application proving that Nash's critical and equilibrium points coincide in the case of invex payoff functions. This is done on Hadamard manifolds, a particular case of noncompact Riemannian symmetric spaces

    Generalized convexity: Their applications to variational problems

    Get PDF
    The aim of this paper is to show one of the generalized convexity applications, generalized monotonicity particularly, to the variational problems study. These problems are related to the search of equilibrium conditions in physical and economic environments. If convexity plays an important role in mathematical programming problems, monotonicity will play a similar role in variational problems. This paper shows some recent results about this topic

    Generalized convexity: Their applications to multiobjective programming

    Get PDF
    The aim of this paper is to show some applicable results to multiobjective optimization problems and the role that the Generalized Convexity plays in them. The study of convexity for sets and functions has special relevance in the search of optimal functions, and in the development of algorithms for solving optimization problems. However, the absence of convexity implies a total loss of effectiveness of the Optimization Theory methods, ie, the results are being verified under less stringent conditions, it was what became known as Generalized convexity. The literature generated around this topic has demonstrated its importance both from a theoretical point of view as practical, but it has also generated an enormous amount of papers with little scientific input

    New optimality conditions for multiobjective fuzzy programming problems

    Get PDF
    In this paper we study fuzzy multiobjective optimization problems de ned for n variables. Based on a new p-dimensional fuzzy stationary-point de nition, necessary e ciency conditions are obtained. And we prove that these conditions are also su cient under new fuzzy generalized convexity notions. Furthermore, the results are obtained under general di erentiability hypothesis.The research in this paper has been supported by Fondecyt-Chile, project 1151154 and by Ministerio de Economía y Competitividad, Spain, through grant MINECO/FEDER(UE) MTM2015-66185-P

    Optimality and duality on Riemannian manifolds

    Get PDF
    Our goal in this paper is to translate results on function classes that are characterized by the property that all the Karush-Kuhn-Tucker points are efficient solutions, obtained in Euclidean spaces to Riemannian manifolds. We give two new characterizations, one for the scalar case and another for the vectorial case, unknown in this subject literature. We also obtain duality results and give examples to illustrate it.Ministerio de Economía y Competitivida

    A Better Approach for Solving a Fuzzy Multiobjective Programming Problem by Level Sets

    Get PDF
    In this paper, we deal with the resolution of a fuzzy multiobjective programming problem using the level sets optimization. We compare it to other optimization strategies studied until now and we propose an algorithm to identify possible Pareto efficient optimal solutions

    Semi-infinite interval equilibrium problems: optimality conditions and existence results

    Get PDF
    This paper aims to obtain new Karush–Kuhn–Tucker optimality conditions for solutions to semi-infinite interval equilibrium problems with interval-valued objective functions. The Karush–Kuhn–Tucker conditions for the semi-infinite interval programming problem are particular cases of those found in this paper for constrained equilibrium problem.We illustrate this with some examples. In addition, we obtain solutions to the interval equilibrium problem in the unconstrained case. The results presented in this paper extend the corresponding results in the literature.The research has been supported by FEDER Andalucía 2014-2020 (UPO-1381297) and by MICIN through grant MCIN/AEI/PID2021-123051NB-100
    corecore