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2Dpto. Economı́a, Métodos Cuantitativos e Ha Económica, Universidad Pablo de Olavide, Sevilla, Spain
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Abstract

In this paper we study fuzzy multiobjective optimization problems defined for n variables. Based on a new p-dimensional
fuzzy stationary-point definition, necessary efficiency conditions are obtained. And we prove that these conditions are
also sufficient under new fuzzy generalized convexity notions. Furthermore, the results are obtained under general
differentiability hypothesis.
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1 Introduction

Fuzzy number and fuzzy mapping concepts have been widely studied by many authors since their introduction by Zadeh
[17] and Chang and Zadeh [6]. One of these research lines has been the fuzzy optimization.

In classic optimization methods, it is a priority to establish necessary optimality conditions which enable the identifi-
cation of possible candidates for optimal solutions. In the crisp optimization problem, the optimizers are also stationary
points and all stationary points can be found by setting the gradient to zero. From these stationary points, we can
separately ascertain whether each stationary point is an optimal solution or not. Thus, a further major part of Opti-
mization Theory involves establishing sufficient optimality conditions for the elimination of non-optimal candidates. It
is therefore necessary to use certain intrinsic properties of problems.

In [8], a scalar G-differentiable fuzzy mapping defined on R is considered and a necessary optimality condition based
on a new fuzzy stationary point definition is obtained. This new stationary-point notion presents major advantages,
from practical and theoretical points of view, as compared to the existing notions which are restrictive and difficult to
compute. It is proved that this condition is also sufficient under new fuzzy generalized convexity conditions.

Now, in this paper, the results obtained in [8] from different approaches are generalized in order to provide results
of a more applicable nature. We first consider fuzzy mappings defined on Rn, with n ≥ 1. Futhermore, let us suppose
that such functions are gH-differentiable, which is a less strict hypothesis than the G-differentiability assumed in [8].
And finally, we consider that our objective is to simultaneously optimize p objectives that are usually in conflict. Our
objectives are modelled by p fuzzy functions.

In [15] and [16] the sufficient KKT optimality conditions for multiobjective programming problems with level-
wise continuously differentiable fuzzy-valued objective functions are derived. The solution concepts for these kinds of
problems follows the concept of nondominated solution adopted in the crips multiobjective programming problems.
To the best of our knowledge, for multiobjective fuzzy problems, no necessary optimality conditions for efficiency can
be found in the literature that enable us to suitably identify the possible candidates for an efficient solution. This is
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the main contribution of our paper, and these conditions are established for gH-differentiable fuzzy functions. The
gH-differentiability is the most general fuzzy differentiability concept defined to date (see [1, 11, 14]).

This paper is organised as follows: in Section 2 we introduce the arithmetic and basic properties for intervals and
fuzzy numbers. In Section 3, the generalized Hukuhara difference (in short, gH-difference) is employed to define the
difference between any fuzzy numbers. Using gH-difference and limit concepts for fuzzy functions, we consider the gH-
derivative for a fuzzy function. In Section 4, optimum solution concepts are defined for a p-dimensional fuzzy function.
In Section 5, we define a p-dimensional stationary point for a p-dimensional fuzzy function and we prove necessary
efficiency conditions for the solution concepts given in Section 4. In Section 6, a new generalized convexity concept is
introduced in order to prove sufficient efficiency conditions.

2 Preliminaries

The family of all bounded closed intervals in R is denoted by KC , that is, KC = {[a, a] / a, a ∈ R and a ≤ a}. For
A = [a, a], B =

[
b, b
]
∈ KC , and ν ∈ R, we consider the following operations

A+B = [a, a] +
[
b, b
]

=
[
a+ b, a+ b

]
, (1)

νA = ν [a, a] =

{
[νa, νa] if ν ≥ 0,
[νa, νa] if ν < 0,

(2)

A	gH B = C ⇔
{

(a) A = B + C, or
(b) B = A+ (−1)C.

(3)

This difference (3), called the generalized Hukuhara difference (gH−difference in short) has highly interesting properties
compared to other definitions (Minskowki, Hukuhara differences), for example A 	gH A = {0} = [0, 0]. Futhermore,
the gH-difference of two intervals A = [a, a] and B =

[
b, b
]

always exists and is equal to ([13])

A	gH B =
[
min

{
a− b, a− b

}
,max

{
a− b, a− b

}]
.

Given two intervals, we define the distance between A and B as H(A,B) = max
{
|a− b| ,

∣∣a− b∣∣} . It is well-known
that (KC , H) is a complete metric space.

We consider the following order relation in KC

Definition 2.1. Let A,B ∈ KC be. It is said that

• A�B ⇔ a ≤ b and ā ≤ b̄.

• A � B ⇔ A�B and A 6= B, i.e. a ≤ b and ā ≤ b̄, with a strict inequality.

• A ≺ B ⇔ a < b and ā < b̄.

It is clear that A ≺ B ⇒ A � B ⇒ A�B.
A fuzzy set on Rn is a mapping defined as u : Rn → [0, 1]. The α-level set of a fuzzy set, 0 ≤ α ≤ 1, is defined as

[u]α =

{
{x ∈ Rn|u(x) ≥ α} if α ∈ (0, 1],
cl(supp u) if α = 0,

where cl(supp u) denotes the closure of the support of u, supp(u) = {x ∈ Rn| u(x) > 0}.

Definition 2.2. A fuzzy number is a fuzzy set u on R with the following properties:

1. u is normal, that is, there exists x0 ∈ R such that u(x0) = 1;

2. u is an upper semi-continuous function;

3. u(λx+ (1− λ)y) ≥ min{u(x), u(y)}, x, y ∈ R, λ ∈ [0, 1];

4. [u]0 is compact.

Let FC be the set of all fuzzy numbers on R.
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Definition 2.3. A p-dimensional fuzzy number u on R is defined as a mapping, u : R→ [0, 1]p, u = (u1, ..., up) where
each ui is a fuzzy number.
Let FpC be the family of all p-dimensional fuzzy numbers, that is, u ∈ FpC if u = (u1, ..., up) where each ui ∈ FC .

There exists a well-known L-U representation of a fuzzy number.

Theorem 2.4. [7] A fuzzy number is completely determined by any pair u = (u, u) of functions u, u : [0, 1] → R, that
define the endpoints of the α-level sets, and satisfy the following three conditions:
• u(α) = uα ∈ R is a bounded nondecreasing left-continuous function in (0, 1] and it is right-continuous at 0;
• u(α) = uα ∈ R is a bounded nonincreasing left-continuous function in (0, 1] and it is right-continuous at 0;
• u(α) ≤ u(α), for all α ∈ [0, 1].

Obviously, if u ∈ FC , then [u]α ∈ KC for all α ∈ [0, 1] and thus the α-level sets of a fuzzy number are given by
[u]α = [uα, uα] , uα, uα ∈ R for all α ∈ [0, 1].

For any u ∈ FpC , therefore

[u]α =

{
{x = (x1, ..., xp) ∈ Rp| ui(xi) ≥ α, ∀i = 1, ..., p} if α ∈ (0, 1),
{x = (x1, ..., xp) ∈ Rp| xi ∈ cl(supp ui), ∀i = 1, ..., p} if α = 0.

Geometrically, this is a Cartesian product of closed intervals in Rp

[u]α =

p∏
i=1

[ui]
α. (4)

Lemma 2.5. It is verified that [u]α ⊆ [u]0, for all α ∈ [0, 1], for all u ∈ FpC .

Proof. If x ∈ [u]α then ui(xi) ≥ α ≥ 0, for all i = 1, ...p and then x ∈ [u]0.

For fuzzy numbers, u, v ∈ FC , represented by [uα, uα] and [vα, vα] respectively, and for any real number θ, we define
the following operations between fuzzy numbers:

(u+ v)(x) = sup
y+z=x

min{u(y), v(z)}, (θu)(x) =

{
u
(
x
θ

)
, if θ 6= 0,

0, if θ = 0,

u	gH v = w ⇔
{

(i) u = v + w,
or (ii) v = u+ (−1)w.

It is known that, for every α ∈ [0, 1],

[u+ v]α = [(u+ v)α, (u+ v)α] = [uα + vα , uα + vα] , (5)

[θu]α =
[
(θu)α, (θu)α

]
= θ[u]α = θ [uα, uα] = [min{θuα, θuα},max{θuα, θuα}] , (6)

and if u	gH v exists, then in terms of α-level sets, we can deduce that (see [13, 12]):

[u	gH v]α = [u]α 	gH [v]α = [min{uα − vα, uα − vα},max{uα − vα, uα − vα}] . (7)

Given u, v ∈ FC , we define the distance between u and v as

D(u, v) = sup
α∈[0,1]

H ([u]α, [v]α) = sup
α∈[0,1]

max {|uα − vα| , |uα − vα|} .

Therefore, (FC , D) is a complete metric space.
We recall the usual order relations between fuzzy numbers [8]:

Definition 2.6. For u, v ∈ FC , it is said that

1. u�v if [u]α�[v]α for every α ∈ [0, 1].

2. u � v if u�v and u 6= v, i. e. [u]α�[v]α for every α ∈ [0, 1], and ∃α0 ∈ [0, 1], such that [u]α0 � [v]α0 .

3. u ≺ v if u�v and ∃α0 ∈ [0, 1], such that [u]α0 ≺ [v]α0 .

Note that � is a partial order relation on FC . Hence, v�u can be written instead of u�v. We observe that if u ≺ v
then u � v and therefore u�v.

Remark 2.1. We recall that if a, b ∈ Rp then a = b ⇔ aj ≥ bj, ∀j = 1, ..., p; a ≥ b ⇔ aj ≥ bj, ∀j = 1, ..., p and ∃r
such that ar > br and a > b⇔ aj > bj, ∀j = 1, ..., p.
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3 gH-Differentiable fuzzy functions

Henceforth, S denotes an open subset of Rn and T denotes an open subset of R. Let us consider f̃ : S → FC as a fuzzy
function or fuzzy mapping. For each α ∈ [0, 1], we associate with f̃ the family of interval-valued functions f̃α : S → KC
given by f̃α(x) = [f̃(x)]α. For any α ∈ [0, 1], we denote

f̃α(x) =
[
f
α

(x), fα(x)
]

=
[
f(α, x), f(α, x)

]
.

Here, for each α ∈ [0, 1], the real-valued endpoint functions f
α
, fα : S → R are called lower and upper functions of f̃ ,

respectively.
We can now present the gH-differentiable fuzzy functions concept based on the gH-difference of fuzzy numbers.

Definition 3.1. [2] The gH-derivative of a fuzzy function f̃ : T → FC at t0 ∈ T is defined as

f̃ ′(t0) = lim
h→0

1

h

[
f̃(t0 + h)	gH f̃(t0)

]
. (8)

If f̃ ′(t0) ∈ FC that satisfies (8) exists, then we can say that f̃ is generalized Hukuhara differentiable (gH-differentiable,
in short) at t0.

The following results establish relationships between the gH-differentiability of f̃ and the gH-differentiability of the
associated family of interval-valued functions f̃α, (see [4]), as well as relationships between the gH-differentiability of f̃
and the differentiability of its real-valued endpoint functions f

α
and fα for each α ∈ [0, 1] (see [5]).

Theorem 3.2. If f̃ : T → FC is gH-differentiable at t0 ∈ T , then f̃α is gH-differentiable at t0 uniformly in α ∈ [0, 1]
and f̃ ′α(t0) = [f̃ ′(t0)]α, for all α ∈ [0, 1].

Theorem 3.3. Let f̃ : T → FC be a fuzzy function. If f̃ is gH-differentiable at t0 ∈ T , then the lateral derivatives of
real-valued endpoint functions (f

α
)′−(t0), (f

α
)′+(t0), (fα)′−(t0) and (fα)′+(t0) exist uniformly in α ∈ [0, 1] and satisfy

one of the following cases:

(a) (f
α

)′−(t0) = (f
α

)′+(t0) and (fα)′+(t0) = (fα)′−(t0), and therefore f
α

and fα are differentiable at t0, uniformly in
α ∈ [0, 1]. Moreover

[f̃
′
(t0)]α =

[
min

{
(f
α

)
′
(t0), (fα)

′
(t0)

}
,max

{
(f
α

)
′
(t0), (fα)

′
(t0)

}]
∀α ∈ [0, 1];

(b) (f
α

)′−(t0) = (fα)′+(t0) and (f
α

)′+(t0) = (fα)′−(t0). Moreover

[f̃
′
(t0)]α =

[
min

{
(f
α

)
′

−(t0), (fα)
′

−(t0)
}
,max

{
(f
α

)
′

−(t0), (fα)
′

−(t0)
}]

=
[
min

{
(f
α

)
′

+(t0), (fα)
′

+(t0)
}
,max

{
(f
α

)
′

+(t0), (fα)
′

+(t0)
}]

∀α ∈ [0, 1].

Remark 3.1. For convenience, we denote [f̃
′
(t0)]α =

[
(f̃

′

α(t0))L, (f̃
′

α(t0))U
]
, where

(f̃
′

α(t0))L = min
{

(f
α

)
′

+(t0), (fα)
′

+(t0)
}

= min
{

(f
α

)
′

−(t0), (fα)
′

−(t0)
}
,

(f̃
′

α(t0))U = max
{

(f
α

)
′

+(t0), (fα)
′

+(t0)
}

= max
{

(f
α

)
′

−(t0), (fα)
′

−(t0)
}
.

Let us define the partial gH-derivative for a fuzzy function f̃ defined on S ⊂ Rn.

Definition 3.4. ([3], [15]) Let f̃ be a fuzzy function defined on S ⊂ Rn and let x0 =
(
x
(0)
1 , ..., x

(0)
n

)
be a fixed element

of S. We consider the fuzzy function h̃i(xi) = f̃(x
(0)
1 , ..., x

(0)
i−1, xi, x

(0)
i+1, ..., x

(0)
n ). If h̃i is gH-differentiable at x

(0)
i , then

we say that f̃ has the ith partial gH-derivative at x0 (denoted by
(
∂f̃/∂xi

)
(x0)) and (∂f̃/∂xi)(x0) = (h̃i)

′(x
(0)
i ).

We say that f̃ is gH-differentiable at x0 if all the partial gH-derivatives
(
∂f̃/∂x1

)
(x0),...,

(
∂f̃/∂xn

)
(x0) exist in

a neighborhood of x0.
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From the definition above we can give the definition of gradient for a fuzzy function as follows:

Definition 3.5. Let f̃ : S → FC be a gH-differentiable fuzzy function at x0 ∈ S. The gradient of f̃ at x0, denoted by
∇̃f̃(x0), becames a p-dimensional fuzzy number, defined by

∇̃f̃(x0) =

((
∂f̃

∂x1

)
(x0), ...,

(
∂f̃

∂xn

)
(x0)

)
∈ FnC , (9)

where each fuzzy number (∂f̃/∂xj)(x0) is the jth partial gH-derivative of f̃ at x0.

Notice that if f̃ is gH-differentiable at x0, then
(
∂f̃/∂xi

)
(x0) is a fuzzy number whose α-level sets,

[
∂f̃

∂xi
(x0)

]α
,

are given by Theorem 3.3: [
∇̃f̃(x0)

]α
=

([
∂f̃

∂x1
(x0)

]α
, ...,

[
∂f̃

∂xn
(x0)

]α)
,

where
[
∂f̃
∂xi

(x0)
]α

is a closed interval of R for all α ∈ [0, 1]. In other words,
[
∇̃f̃(x0)

]α
is a n-upla of which each

component is a real closed interval.

Remark 3.2. There are other derivative concepts for fuzzy functions which are used in fuzzy optimization. Notice that
the gH-differentiability coincides with the H-differentiability [11], only when f

α
and fα are differentiable and (f

α
)′(x)

≤ (fα)′(x) for all α ∈ [0, 1]. The gH-differentiability coincides with level-wise differentiability ([14]) if Theorem 3.3 (a)
is verified. Futhermore, G-differentiability implies gH-differentiability (see [1]).

Definition 3.6. Given a p-dimensional fuzzy function f̃ = (f̃1, ..., f̃p) ∈ FpC , we say that f̃ is a p-dimensional gH-

differentiable fuzzy function at x0 ∈ S, if and only if, f̃j is gH-differentiable at x0, for all j = 1, ..., p.

From definition above, if f̃ : S ⊂ Rn → FpC , then for each j = 1, ..., p

[∇̃f̃j(x0)]α =

([
∂f̃j
∂x1

(x0)

]α
, ...,

[
∂f̃j
∂xn

(x0)

]α)
.

Therefore, for each i = 1, ..., n: [
∂f̃

∂xi
(x0)

]α
=

([
∂f̃1
∂xi

(x0)

]α
, ...,

[
∂f̃p
∂xi

(x0)

]α)
∈ KpC

From Remark 3.1, for each j = 1, ..., p and for each i = 1, ...n[
∂f̃j
∂xi

(x0)

]α
=

(∂f̃jα
∂xi

(x0)

)L
,

(
∂f̃jα
∂xi

(x0)

)U .
For convenience, if we denote f̃α = (f̃1α , ..., f̃pα), then[

∂f̃

∂xi
(x0)

]α
=

(∂f̃α
∂xi

(x0)

)L
,

(
∂f̃α
∂xi

(x0)

)U . (10)

4 Multiobjective fuzzy optimization

We need to interpret the meaning of ”minimize a p-dimensional fuzzy function”. We are going to follow a similar
solution concept to that of the nondominated solution introduced by Pareto, which is usually considered in real-valued
multiobjective optimization.

Definition 4.1. Let f̃ : S ⊆ Rn → FpC be a p-dimensional fuzzy function. It is said that x∗ ∈ S is:
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1. a strongly efficient solution if there exists no x ∈ S such that f̃(x)�f̃(x∗) and f̃(x) 6= f̃(x∗);

2. an efficient solution if there exists no x ∈ S such that f̃j(x)�f̃j(x∗), ∀j = 1, ..., p and ∃k such that f̃k(x) ≺ f̃k(x∗);

3. a mildly weakly efficient solution if there exists no x ∈ S such that f̃j(x) � f̃j(x∗), ∀j = 1, ..., p;

4. a weakly efficient solution if there exists no x ∈ S such that f̃(x) ≺ f̃(x∗).

The following relations are immediate:

efficient ⇐ strongly efficient
⇓ ⇓

weakly efficient ⇐ mildly weakly efficient

We focus our study, therefore, on the weakly efficient solutions because these represent the most general class of
solutions and we prove necessary and sufficient conditions for this solution class.

Remark 4.1. If f̃ : Rn → FpC , such that f̃ = χ{f}, where f : Rn → Rp, that is, f̃ is a real-valued or crisp vector
function:

• fuzzy strongly efficient ≡ fuzzy efficient ≡ crisp efficient Pareto solution, and

• fuzzy mildly weakly efficient ≡ fuzzy weakly efficient ≡ crisp weakly efficient Pareto solution.

Remark 4.2. From [8], that is, if f̃ : T ⊆ R → FC , then relationships between the minimum and efficient solution
definitions would be:

• efficient solution ≡ weakly efficient solution ≡ weak minimum, and

• strongly efficient solution ≡ mildly weakly efficient solution ≡ minimum.

Example 4.2. Trapezoidal fuzzy numbers are a special type of fuzzy numbers which are well determined by four real
numbers a ≤ b ≤ c ≤ d. We write (a, b, c, d) to denote trapezoidal fuzzy numbers whose core or 1-level is given by [b, c].
If b = c, then we denote (a, b, c) which is a triangular fuzzy number, whose α-levels are

[(a, b, c)]α = [a+ (b− a)α, (b− c)α+ c] and [(a, b, c, d)]α = [(b− a)α+ a, (c− d)α+ d].

Consider the 2-dimensional fuzzy function f̃ = (f̃1, f̃2) : R2 → F2
C defined by

f̃1(x1, x2) = (1, 1, 1) · x21 + (0, 0, 1) · x22

f̃2(x1, x2) = (1, 1, 1, 1) · x21 + (1, 2, 4, 6) · x2
Therefore, [

f̃1(x1, x2)
]α

=
[
x21 , x

2
1 + (1− α)x22

]
,[

f̃2(x1, x2)
]α

=

{ [
x21 + (1 + α)x2, x

2
1 + 2(3− α)x2

]
if x1 ∈ R and x2 ≥ 0;[

x21 + 2(3− α)x2, x
2
1 + (1 + α)x2

]
if x1 ∈ R and x2 < 0.

Hence,

• Let x∗ = (0, x2) with x2 > 0. x∗ is not a strongly efficient or efficient or mildly weakly efficient solution because,
for x = (0,−x2), f̃1(x) = f̃1(x∗) and

[f̃2(x)]α = [−2(3− α)x2, −(1 + α)x2] ≺ [0, 0] ≺ [(1 + α)x2, 2(3− α)x2] = [f̃2(x∗)]α.

However, x∗ is a weakly efficient solution because another x such that [f̃1(x)]α0 ≺ [f̃1(x∗)]α0 for some α0 cannot
exist.

• Let x∗ = (0,−1). x∗ is a strongly efficient solution for f̃ , and therefore it is a weakly efficient solution, because if
f̃1(x) � f̃1(x∗) for x = (x1, x2) then x1 = 0 and |x2| < 1. Moreover, if f̃2(x) � f̃2(x∗), then x2 < −1, which is a
contradiction.

• Let x∗ = (0, x2). x∗ is a weakly efficient solution ∀x2 ∈ R, because f̃1(y) ≺ f̃1(x∗) cannot verified.
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Example 4.3. Consider the 2-dimensional fuzzy function f̃ = (f̃1, f̃2) : R2 → F2
C defined by

f̃1(x1, x2) = (0, 0, 1, 1) · x21 + (1, 2, 3, 4) · x2

f̃2(x1, x2) = (1, 1, 1, 1) · x21 + (1, 2, 4, 6) · x2
Therefore, [

f̃1(x1, x2)
]α

=

{ [
(1 + α)x2, x

2
1 + (α+ 4)x2

]
if x1 ∈ R and x2 ≥ 0;[

(α+ 4)x2, x
2
1 + (1 + α)x2

]
if x1 ∈ R and x2 < 0.[

f̃2(x1, x2)
]α

=

{ [
x21 + (1 + α)x2, x

2
1 + 2(3− α)x2

]
if x1 ∈ R and x2 ≥ 0;[

x21 + 2(3− α)x2, x
2
1 + (1 + α)x2

]
if x1 ∈ R and x2 < 0.

It can therefore be deduced that f̃ does not have weakly efficient solutions because, for all x, it is possible to find
another y such that f̃(y) ≺ f̃(x). For example, for x = (0, 0), there exists y = (0,−1) and

[f̃(x)]α = ([0, 0], [0, 0]) ,

[f̃(y)]α = ([−(4 + α), −(1 + α)], [−2(3− α), −(1 + α)]) ,

such that
[f̃(y)]α ≺ [f̃(x)]α, ∀α ∈ [0, 1].

Remark 4.3. For convenience, we introduce the following notations.

1. Let A = [a, a] ∈ KC and let λ = (λ1, λ2) ∈ R2. We denote as λ×A the lineal combination:

λ×A = λ1a+ λ2a.

λ×A = 0 with λ ≥ 0 is equivalent to 0 ∈ [a, a], because λ1a+ λ2a = 0 with λ1, λ2 ≥ 0, but the two λ1, λ2 are not
simultaneously zero, if and only, if a ≤ 0 ≤ a, that is, 0 ∈ [a, a].

2. Let A = (A1, ..., Ap), where Aj ∈ KC . Let Λ ∈Mp×2, we denote as Λ×A the lineal combination:

Λ×A =

p∑
j=1

λj ×Aj =

p∑
j=1

λj1aj + λj2aj .

If 0 ∈ Aj, for some j = 1, ..., p, then there exists Λ ∈Mp×2, with λij ≥ 0, but not all zero, such that Λ×A = 0.

If Λ×A = 0 with λij ≥ 0, nor all λij simultaneosuly zero, then there exist λ, λ, (λ, λ) ≥ 0 such that 0 ∈
[
λTa, λ

T
a
]
,

where a = (a1, ..., ap) and a = (a1, ..., ap).

3. If a ∈ Rm and u ∈ FmC , then

• au = (a1u1, ..., amum) ∈ FmC such that [au]α =
∏m
i=1[aiui]

α =
∏m
i=1 ai[ui]

α.

• aTu =

m∑
i=1

aiui ∈ FC and, with respect to α-level sets,

[aTu]α =

m∑
i=1

ai[ui]
α =

∑
ai≥0

aiuiα +
∑
ai<0

aiuiα,
∑
ai≥0

aiuiα +
∑
ai<0

aiuiα

 .
Lemma 4.4. If a ∈ Rm and u ∈ FmC , then

aTu ≺ 0̃⇒ aTuα < 0 and aTuα < 0, ∀α ∈ [0, 1].
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Proof.

aTu ≺ 0̃⇔ [aTu]α ≺ [0, 0], ∀α⇔
m∑
i=1

ai[ui]
α ≺ [0, 0], ∀α⇔

∑
ai≥0

aiuiα +
∑
ai<0

aiuiα < 0, ∀α ∈ [0, 1], (11)

∑
ai≥0

aiuiα +
∑
ai<0

aiuiα < 0, α ∈ [0, 1]. (12)

If ai ≥ 0, then aiuiα ≥ aiuiα, from (12)

0 >
∑
ai≥0

aiuiα +
∑
ai<0

aiuiα ≥
∑
ai≥0

aiuiα +
∑
ai<0

aiuiα = aTuα, ∀α ∈ [0, 1].

If ai < 0, then aiuiα ≤ aiuiα and

0 >
∑
ai≥0

aiuiα +
∑
ai<0

aiuiα ≥
∑
ai≥0

aiuiα +
∑
ai<0

aiuiα = aTuα, ∀α ∈ [0, 1].

The reciprocal result of Lemma 4.4 does not hold in general. For example, [u1]α = [1, 2],∀α; [u2]α = [ 32 ,
5
2 ],∀α, and

a = (1,−1), then

aTuα = 1 · 1 + (−1) · 3

2
< 0 and aTuα = 1 · 2 + (−1) · 5

2
< 0, ∀α.

However, [aTu]α = [1, 2] + [− 5
2 ,−

3
2 ] = [− 3

2 ,
1
2 ] ⊀ [0, 0],∀α, and thus aTu ⊀ 0̃.

5 Necessary efficiency condition for a multiobjective fuzzy problem

In the crisp multiobjetive optimization problem, the efficient solutions are also stationary points, and the stationary
points can be found by setting the gradient to zero (see [9]). From these stationary points, we can separately ascertain
whether each stationary point is an efficient solution or not. However, for the fuzzy multiobjective programming
problems, we lack adequate definitions of stationary points. Futhermore, the statement that all efficient solutions for a
multiobjective fuzzy optimization problem are stationary points remain to be proved.

We now establish a necessary efficiency condition for the solutions of p-dimensional fuzzy optimization problems. It
is important to emphasize that in previous work, no result of this type exits.

First, we introduce the fuzzy p-dimensional stationary point definition:

Definition 5.1. Let f̃ be a p-dimensional gH-differentiable function on S, x∗ ∈ S is said to be a fuzzy p-dimensional
stationary point for f̃ , if for every i = 1, ..., n, there exists a nonnegative matrix Λi ∈Mp×2 such that

Λi ×

[
∂f̃

∂xi
(x∗)

]0
= 0. (13)

If f̃ : T → FC , then Definition 5.1 coincides with Definition 6 and Corollary 1 of [8]. If f̃ is a crisp function, then
Definition 5.1 coincides with Definition 2.3 of [9].

Remark 5.1. From Remark 4.3 (2), condition (13) is equivalent to the following statement: for each i = 1, ..., n, there

exist λi, λi ∈ Rp, (λi, λi) ≥ 0 such that 0 ∈
[
λTi

(
∂f̃0
∂xi

(x∗)
)L

, λ
T

i

(
∂f̃0
∂xi

(x∗)
)U]

. Futhermore, from Remark 4.3 (2), if

for each i = 1, ..., n, there exists j = 1, ..., p, such that 0 ∈
[
∂f̃j
∂xi

(x∗)
]0

, then x∗ is a fuzzy p-dimensional stationary-point

for f̃ .

In crisp optimization, the stationary points are those whose gradient is zero. From Definition 5.1, in fuzzy environ-
ment, p-dimensional stationary points are those such that zero is in the 0-level set of the gradient.
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Proposition 5.2. Let f̃ be a p-dimensional fuzzy gH-differentiable function on S. If x∗ ∈ S is a weakly efficient
solution for f̃ , then the following system has no solution at y ∈ R, for any i = 1, ..., n.

y

(
∂f̃

∂xi
(x∗)

)
≺ 0̃p. (14)

Proof. Arguing by contradiction, let us suppose that for some i = 1, ..., n, ∃y ∈ R such that y
∂f̃j
∂xi

(x∗) ≺ 0̃ ∀j = 1, ..., p.
Therefore, from Definition 3.4, for some i

y[h′j(x
∗
i )]

α ≺ [0, 0], ∀α ∈ [0, 1], ∀j = 1, ..., p.

From Theorem 3.3, for each j, one of the following cases holds:

(a) There exist h′j(α, x
∗) and h′j(α, x

∗), uniformly in α ∈ [0, 1] and

y[h′j(x
∗
i )]

α ≺ [0, 0]⇒ yh′j(α, x
∗
i ) < 0 and yh′j(α, x

∗
i ) < 0,∀α ∈ [0, 1].

Since hj(α, x) and hj(α, x) are real-valued functions,

yh′j(α, x
∗
i ) = lim

t→0

1

t
(hj(α, x

∗
i + ty)− hj(α, x∗i )) < 0, ∀α ∈ [0, 1].

Hence, ∀ν > 0, ∃εj > 0 such that if |t| < εj , then∣∣∣∣1t (hj(α, x
∗
i + yt)− hj(α, x∗i ))− yh′j(α, x∗i )

∣∣∣∣ < ν, ∀α ∈ [0, 1].

If we consider ν = − 1
2yh

′
j(α, x

∗
i ) > 0, then, for |t| < εj

−ν <
(

1
t (hj(α, x

∗
i + yh)− hj(α, x∗))− yhj ′(α, x∗i )

)
< ν

and
1
t (hj(α, x

∗
i + yt)− hj(α, x∗i )) < yh′j(α, x

∗
i ) + ν = 1

2yh
′
j(α, x

∗
i ) < 0, ∀α ∈ [0, 1].

If h ∈ (0, εj) holds, then

hj(α, x
∗
i + yt)− hj(α, x∗i ) < 0, ∀α ∈ [0, 1].

fj(α, (x
∗
1, ..., x

∗
i + yt, ..., x∗n))− fj(α, x∗) < 0, ∀α ∈ [0, 1]. (15)

Analogously, ∃εj > 0 such that, ∀t ∈ (0, εj),

hj(α, x
∗
i + yt)− hj(α, x∗i ) < 0, ∀α ∈ [0, 1],

fj(α, (x
∗
1, ..., x

∗
i + yt, ..., x∗n))− fj(α, x∗) < 0, ∀α ∈ [0, 1]. (16)

(b) There exist (hj(α, (x
∗
i ))
′
+ and (hj(α, x

∗
i ))
′
+, uniformly in α ∈ [0, 1], which satisfy

h′j(x
∗
i ) =

[
min

{
(hj(α, x

∗
i ))
′
+, (hj(α, x

∗
i ))
′
+

}
,max

{
(hj(α, x

∗
i ))
′
+, (hj(α, x

∗
i ))
′
+

}]
.

Since

y
[
h′j(x

∗
i )
]α ≺ [0, 0]⇔

{
y(hj(α, x

∗
i ))
′
+ < 0

y(hj(α, x
∗
i ))
′
+ < 0

, ∀α ∈ [0, 1].

Given that

y(hj(α, x
∗
i ))
′
+ = lim

t→0+

1

t
(hj(α, x

∗
i + yt)− hj(α, x∗i )) < 0,



28 R. Osuna-Gómez, B. Hernández-Jiménez, Y. Chalco-Cano, G. Ruiz-Garzón

it can therefore be deduced that, there exist ε+j > 0, such that, for all t, with 0 < t < ε+j ,

hj(α, x
∗
i + yt)− hj(α, x∗i ) < 0, ∀α ∈ [0, 1].

fj(α, (x
∗
1, ..., x

∗
i + yt, ..., x∗n)− fj(α, x∗) < 0, ∀α ∈ [0, 1]. (17)

Analogously, there exists ε+j > 0 such that, for all t, with 0 < t < ε+j ,

hj(α, x
∗
i + yt)− hj(α, x∗i ) < 0, ∀α ∈ [0, 1],

fj(α, (x
∗
1, ..., x

∗
i + yt, ..., x∗n)− fj(α, x∗) < 0, ∀α ∈ [0, 1]. (18)

By taking ε = min{εj , εj , ε+j , ε
+
j : j = 1, ..., p} , t ∈ (0, ε) and from (15), (16), (17), (18), we deduce that

f(α, x)− f(α, x∗) < 0 and f(α, x)− f(α, x∗) < 0, ∀α ∈ [0, 1],

where x = (x∗1, ..., x
∗
i + ty, ..., x∗n), and we suppose that x ∈ S. Hence, ∃x ∈ S and f̃(x) ≺ f̃(x∗), and this is a

contradiction to the affirmation that x∗ is a weakly efficient solution for f̃ .

We can now, we prove the main result of this section.

Theorem 5.3. Let f̃ : S → FpC be a p-dimensional gH-differentiable fuzzy function at x∗ ∈ S. If x∗ is a weakly

efficient solution for f̃ , then x∗ is a fuzzy p-dimensional stationary-point for f̃ .

Proof. If x∗ is a weakly efficient solution for f̃ , then (14) has no solution for any i = 1, ..., n. From Lemma 2.5,

y

(
∂f̃

∂xi
(x∗)

)
≺ 0̃p ⇔ y

[
∂f̃j
∂xi

(x∗)

]α
≺ [0, 0], ∀α ∈ [0, 1], ∀j = 1, ..., p⇔ y

[
∂f̃j
∂xi

(x∗)

]0
≺ [0, 0], ∀j = 1, ..., p.

Now, for every i = 1, ..., n, let us consider the following lineal system

yAi < 0
yBi < 0

}
(19)

where Ai, Bi are

Ai =


(
∂f̃10
∂xi

(x∗)
)L

...(
∂f̃p0
∂xi

(x∗)
)L

 , Bi =


(
∂f̃10
∂xi

(x∗)
)U

...(
∂f̃p0
∂xi

(x∗)
)U

 .

If (19) has a solution for some i = 1, ..., n, then the system (14) also has a solution for some i. This is impossible from
Proposition 5.2.

Since (19) is a system of linear inequalities and it has no solution for any i, from Gordan’s alternative theorem, for
each i, then there exist αi, βi ∈ Rp with αi = 0, βi = 0, but not all zero, such that

ATi αi +BTi βi = 0⇔
p∑
j=1

[
αij

(
∂ ˜fj0
∂xi

(x∗)
)L

+ βij

(
∂ ˜fj0
∂xi

(x∗)
)U ]

= 0.

By redefining Λi = (αij , βij), it can be stated that, for every i, there exits Λi ∈ Mp×2 such that Λi ×
[
∂f̃
∂xi

(x∗)
]0

= 0,

and the proof is complete.

Hence, the identification of possible candidates for weakly efficient solutions is reduced to identification of those
points whose 0-level set of the gradient contain the zero element.
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Remark 5.2. In deterministic vectorial optimization, x∗ is a Vectorial Critical Point, (see [9]) if λ ∈ Rp, λ ≥ 0 exists
such that

λT∇f(x∗) = 0. (20)

Since ∇f(x∗) ∈Mp×n, (20) implies that, for each i = 1, ..., n,

p∑
j=1

λj
∂fj
∂xi

(x∗) = 0. Thus (20) coincides with Definition

5.1 except in that λ is unique for all i. And, in (13), there are two multipliers for each i, and they are also different.

Example 5.4. Let f̃ be from Example 4.2. Therefore, f̃1 and f̃2 are gH-differentiable fuzzy functions on R2 and[
∇̃f̃1(x)

]0
=

(
[2x1, 2x1],

{
[0, 2x2] if x1 ∈ R, x2 ≥ 0
[2x2, 0] if x1 ∈ R, x2 < 0

)
,

[
∇̃f̃2(x)

]0
=
(

[2x1, 2x1], [1, 6]
)
.

If x1 6= 0, then Λ1 nonnegative such that Λ1 × ([2x1, 2x1], [2x1, 2x1]) = 0 cannot exist. Therefore, only fuzzy p-
dimensional stationary points for f̃ are those points such that x∗ = (0, x2). We can therefore conclude, that if x∗1 = 0
then x∗ is a weakly efficient solution for f̃ .

Example 5.5. For f̃ , from Example 4.3,
[
∂f̃
∂x2

(x)
]0

= ([1, 3], [1, 6]) . Hence, neither do fuzzy p-dimensional stationary

points exist, nor do weakly efficient solutions exits.

6 Sufficient efficiency condition for a multiobjective fuzzy problem

In order to ensure that the stationary points characterize weakly efficient solutions it is necessary to demand additional
hypotheses on the function. In [10], [15] and [16] sufficient optimality conditions are established for fuzzy optimization
problems by demanding the convexity hypothesis (the endpoint functions are convex functions), pseudoconvexity hy-
pothesis (the endpoint functions are pseudoconvex functions), and invexity hypothesis (the positive sum of endpoint
functions is an invex function). We propose a more general convexity hypothesis.

Definition 6.1. Let f̃ be a p-dimensional gH-differentiable fuzzy mapping on S. It is said that f̃ is a weak pseudoinvex

fuzzy function on S if, ∀x, y ∈ S, there exists η(x, y) ∈ R such that if f̃(x) ≺ f̃(y) then η(x, y) ∂f̃∂xi (y) ≺ 0̃p, for some
i = 1, ..., n.

Theorem 6.2. If x∗ is a fuzzy p-dimensional stationary point for f̃ and f̃ is a weak pseudoinvex function, then x∗ is
a weakly efficient solution for f̃ .

Proof. Arguing by contradiction, let us suppose that there exists x, x∗ ∈ S x 6= x∗ such that f̃(x) ≺ f̃(x∗), then

η(x, x∗)
∂f̃

∂xi
(x∗) ≺ 0̃p ⇔ η(x, x∗)

(
∂f̃j
∂xi

(x∗)

)
≺ 0̃ ∀j = 1, ..., p⇔

⇔ η(x, x∗)

[
∂f̃j
∂xi

(x∗)

]α
≺ [0, 0], ∀j = 1, ..., p, ∀α ∈ [0, 1]⇔

From Lemma 2.5,

⇔ η(x, x∗)

[
∂f̃j
∂xi

(x∗)

]0
≺ [0, 0], ∀j = 1, ..., p.

From Lemma 4.4, the following system has a solution

yAi < 0
yBi < 0

}
where

Ai =


(
∂f̃10
∂xi

(x∗)
)L

...(
∂f̃p0
∂xi

(x∗)
)L

 , Bi =


(
∂f̃10
∂xi

(x∗)
)U

...(
∂f̃p0
∂xi

(x∗)
)U

 .
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Consequently, there can be no positive linear combinations αi, βi ∈ Rp such that

0 ∈

αTi
(
∂f̃0
∂xi

(x∗)

)L
, βTi

(
∂f̃0
∂xi

(x∗)

)U
And hence, x∗ cannot be a fuzzy p-dimensional stationary point which is a contradiction.

It should be borne in mind that the necessary optimality condition that we have proved and the stationary point
definition on which is based are less restrictive than the corresponding condition and definition for real-valued functions
(see [9]). This is due to the fact that the multiplier λ can be different for each variable xi. On the other hand, the
notion that guarantees the sufficient optimality condition, that of weak pseudoinvexity, is more restrictive than the
notion required by the authors in [9] since if f is a real-valued vector function and there exists η(x, y) ∈ R such that
for some i, η(x, y) ∂f∂xi (x

∗) < 0 then also there exists η(x, y) ∈ Rn such that η(x, y)T∇f(x) < 0 (it is sufficient to take

η(x, y)j = 0 when j 6= i). However, if there exists η(x, y) ∈ Rn such that η(x, y)T∇f(x) < 0, then it cannot be certain

that there exists i such that η(x, y)i
∂fj
∂i (y) < 0 for all j. These differences are due to the nonlinearity of the fuzzy

differentiability notion ((a+ b)T ∇̃f̃(x) 6= aT ∇̃f̃(x)+bT ∇̃f̃(x)), and therefore the decrease directions of function cannot
be characterized as in the real-valued case.

Example 6.3. Given f̃ from Example 4.2, ∀x, y, there exists η(x, y) ∈ R such that η(x, y)[2x1, 2x1] ≺ [0, 0], and hence

for i = 1, η(x, y) ∂f̃∂x1
≺ 0̃2. Thus, f̃ is a weak pseudoinvex fuzzy function on R2, and it was proved that all the stationary

points were weakly efficient solutions.

Example 6.4. Given f̃ from Example 4.3, ∀x, y, there exists η(x, y) < 0 such that

η(x, y)[1 + α, α+ 4] ≺ [0, 0] and η(x, y)[1 + α, 2(3− α)] ≺ [0, 0].

Therefore for i = 2, η(x, y) ∂f̃∂x2
≺ 0̃2. Thus, f̃ is a weak pseudoinvex fuzzy function on R2.

7 Conclusions

In this paper, we study fuzzy multiobjective optimization problems and provide necessary and sufficient efficiency
conditions based on a suitable differentiability notion. First, we prove that the candidates for efficient solutions can
be identified by calculating the gradients and by determining the points whose 0-level sets of gradient contain the zero
element. Secondly, using the sufficient efficiency conditions proved in Theorem 6.2, the nonefficient solutions can be
identified. The results obtained generalize the results that exist in the literature in several aspects. This generalization
is reached primarly since our results consider p-dimensional functions instead of scalar functions and they are defined
for n variables instead of only one variable. Futhermore, it has been proved that the differentiability notion used is less
restrictive than those used in the literature. Consequently, this paper contains new contributions to Fuzzy Optimization
Theory.
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