685 research outputs found
In situ recording of Mars soundscape
Before the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (1) atmospheric turbulence changes at centimetre scales or smaller at the point where molecular viscosity converts kinetic energy into heat(1), (2) the speed of sound varies at the surface with frequency(2,3) and (3) high-frequency waves are strongly attenuated with distance in CO2 (refs. (2-4)). However, theoretical models were uncertain because of a lack of experimental data at low pressure and the difficulty to characterize turbulence or attenuation in a closed environment. Here, using Perseverance microphone recordings, we present the first characterization of the acoustic environment on Mars and pressure fluctuations in the audible range and beyond, from 20 Hz to 50 kHz. We find that atmospheric sounds extend measurements of pressure variations down to 1,000 times smaller scales than ever observed before, showing a dissipative regime extending over five orders of magnitude in energy. Using point sources of sound (Ingenuity rotorcraft, laser-induced sparks), we highlight two distinct values for the speed of sound that are about 10 m s(-1) apart below and above 240 Hz, a unique characteristic of low-pressure CO2-dominated atmosphere. We also provide the acoustic attenuation with distance above 2 kHz, allowing us to explain the large contribution of the CO2 vibrational relaxation in the audible range. These results establish a ground truth for the modelling of acoustic processes, which is critical for studies in atmospheres such as those of Mars and Venus.Many people helped with this project in addition to the co-authors,
including hardware and operation teams, and we are most grateful for their support. This
project was supported in the USA by NASA’s Mars Exploration Program and in France is
conducted under the authority of CNES. Part of this research was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration (80NM0018D0004). The work of A. Munguira is
supported by grant PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033
Implementación de API en Python para el Planetary Spectrum Generator y aplicación a las atmósferas planetarias
Castellano: La espectroscopía aplicada a la observación de las atmósferas planetarias permite obtener una gran cantidad de información acerca de las mismas. En particular, en los rangos visible e infrarrojo del espectro reflejado podemos caracterizar sus nubes y nieblas superiores, así como su distribución vertical. Por otro lado, en el espectro térmico se obtiene información directa acerca del perfil térmico de las atmósferas, a diversos niveles en función de las longitudes de onda o frecuencias empleadas. Una de las herramientas disponibles para todo ello es el Planetary Spectrum Generator (https://psg.gsfc.nasa.gov/) de NASA Goddard Space Flight Center. En este proyecto se implementa la API (Application Program Interface) en Python para poder realizar llamadas al código y a sus herramientas de inversión desde un servidor cliente. El código ha sido implementado modularmente, de modo que puede responder a diferentes condiciones de observación en las distintas atmósferas, tanto de planetas del Sistema Solar como de planetas extrasolares. Este método ha sido utilizado en el estudio de diversos escenarios para evaluar la sensibilidad y capacidades del procedimiento.Euskera: Espektroskopiaren bitartez, informazio ugari lortu daiteke planeten atmosferei buruz. Bereziki, erreflexatutako espektroaren ikusgai eta infragorri tarteak behatuz, atmosferaren konposatuen kokapen bertikala bereizi daiteke, hodei eta guzti. Bestalde, espektro termikoak atmosferaren maila bertikal ezberdinen tenperatura inferitzea ahalbidetzen du, frekuentzia tartearen arabera. Guzti hau lortzeko eskuragarri dagoen erreminta bat NASA Goddard Space Flight Center-en Planetary Spectrum Generator (PSG) da. Lan honen koska, bere API (Application Program Interface) Python-en inplementatzea izan da, bere kodeari eta inbertsio tresnei modu lokalean deitu ahal izateko. Idatzitako kodea moldakorra izan dezan blokeetan antolatu da. Era honetan atmosferetako edozein problema fisikori aurre egiteko gai da. Metodo hau fenomeno ugari ikertzeko erabili da, bere sentsibilitate eta ahalmena balioztatzeko helburuarekin.English: The spectroscopy technique applied to planetary atmospheres allows us to gain a lot of knowledge about them. In particular, focusing our studies on the visible and near IR range of the reflected spectra we are able to characterize their vertical compound profile, including the clouds and hazes present. Additionally, from the thermal spectra the vertical temperature profile can be inferred for some atmospheric levels, depending on the sounded frequencies. One of the tools that allows these analysis is the Planetary Spectrum Generator of NASA Goddard Space Flight Center. The purpose of this project is to implement its API (Application Program Interface) in a Python code to call the packages within PSG from a local server. The code has been written per modules in such a way that it is extensible for any physical scenario that takes place in the atmospheres, provided that PSG is able to fit it. This applies not only to the Solar System's atmospheres, but also to extrasolar planets. Various scenarios have been examined with this method in order to assess the sensibility and potential of the performance
Implementación de API en Python para el Planetary Spectrum Generator y aplicación a las atmósferas planetarias
Castellano: La espectroscopía aplicada a la observación de las atmósferas planetarias permite obtener una gran cantidad de información acerca de las mismas. En particular, en los rangos visible e infrarrojo del espectro reflejado podemos caracterizar sus nubes y nieblas superiores, así como su distribución vertical. Por otro lado, en el espectro térmico se obtiene información directa acerca del perfil térmico de las atmósferas, a diversos niveles en función de las longitudes de onda o frecuencias empleadas. Una de las herramientas disponibles para todo ello es el Planetary Spectrum Generator (https://psg.gsfc.nasa.gov/) de NASA Goddard Space Flight Center. En este proyecto se implementa la API (Application Program Interface) en Python para poder realizar llamadas al código y a sus herramientas de inversión desde un servidor cliente. El código ha sido implementado modularmente, de modo que puede responder a diferentes condiciones de observación en las distintas atmósferas, tanto de planetas del Sistema Solar como de planetas extrasolares. Este método ha sido utilizado en el estudio de diversos escenarios para evaluar la sensibilidad y capacidades del procedimiento.Euskera: Espektroskopiaren bitartez, informazio ugari lortu daiteke planeten atmosferei buruz. Bereziki, erreflexatutako espektroaren ikusgai eta infragorri tarteak behatuz, atmosferaren konposatuen kokapen bertikala bereizi daiteke, hodei eta guzti. Bestalde, espektro termikoak atmosferaren maila bertikal ezberdinen tenperatura inferitzea ahalbidetzen du, frekuentzia tartearen arabera. Guzti hau lortzeko eskuragarri dagoen erreminta bat NASA Goddard Space Flight Center-en Planetary Spectrum Generator (PSG) da. Lan honen koska, bere API (Application Program Interface) Python-en inplementatzea izan da, bere kodeari eta inbertsio tresnei modu lokalean deitu ahal izateko. Idatzitako kodea moldakorra izan dezan blokeetan antolatu da. Era honetan atmosferetako edozein problema fisikori aurre egiteko gai da. Metodo hau fenomeno ugari ikertzeko erabili da, bere sentsibilitate eta ahalmena balioztatzeko helburuarekin.English: The spectroscopy technique applied to planetary atmospheres allows us to gain a lot of knowledge about them. In particular, focusing our studies on the visible and near IR range of the reflected spectra we are able to characterize their vertical compound profile, including the clouds and hazes present. Additionally, from the thermal spectra the vertical temperature profile can be inferred for some atmospheric levels, depending on the sounded frequencies. One of the tools that allows these analysis is the Planetary Spectrum Generator of NASA Goddard Space Flight Center. The purpose of this project is to implement its API (Application Program Interface) in a Python code to call the packages within PSG from a local server. The code has been written per modules in such a way that it is extensible for any physical scenario that takes place in the atmospheres, provided that PSG is able to fit it. This applies not only to the Solar System's atmospheres, but also to extrasolar planets. Various scenarios have been examined with this method in order to assess the sensibility and potential of the performance
Espectroscopía visible e infrarroja de Júpiter
[ES] En este proyecto se aborda el estudio espectroscópico de la luz reflejada por la atmósfera de Júpiter en el rango visible e infrarrojo cercano del espectro. Se emplean como referencia dos medidas observacionales y con ellas se modeliza la atmósfera del planeta mediante el código de transporte radiativo PUMAS implementado en el programa PSG de NASA. De esta forma, se obtendrá una caracterización de las capas atmosféricas situadas en la estratosfera inferior y troposfera superior
Vulnerability of Spanish forests under climatic change: evaluation through models
Los bosques son ecosistemas fundamentales en la generación de servicios ecosistémicos y, por tanto, para el bienestar humano. El cambio global (incluyendo cambio climático y cambios en el uso del suelo) puede, sin embargo, alterar la dinámica y el funcionamiento de los ecosistemas, afectando al futuro suministro de servicios ecosistémicos. La vulnerabilidad frente al cambio global depende de la exposición (magnitud del cambio), la sensibilidad (susceptibilidad al cambio), y la capacidad de adaptación (habilidad para ajustarse al cambio) de las especies. En el presente trabajo presentamos diversas aproximaciones de modelización que permiten analizar los diferentes componentes de la vulnerabilidad, e incluimos ejemplos desarrollados para bosques de la península Ibérica. A pesar de estos avances, la evidencia empírica y teórica para integrar los impactos potenciales (i.e. incluyendo la exposición y la sensibilidad) y la capacidad de adaptación de las especies, es escasa. Por ello, para una adecuada evaluación sería necesario mejorar el conocimiento existente sobre la sensibilidad y capacidad de adaptación de las especies y su respuesta frente a cambios ambientales extremos (por ejemplo, mediante redes de seguimiento a largo plazo), integrando adecuadamente la información obtenida en modelos que incluyan procesos basados en diferentes niveles de organización biológica, desde procesos fisiológicos a modelos agregados de distribución de especies.Forest ecosystems contribute to human well-being providing critical ecosystem services. Global change (including climate and land-use changes), however, can alter ecosystem functioning and structure, even jeopardizing the future supply of ecosystem services. Vulnerability to global change depends on exposition (magnitude of the change), sensitivity (susceptibility to the change), and adaptive capacity (ability to adjust to the change) of the species. Here, we summarize diverse modeling approaches to analyze the different components of vulnerability, providing specific examples focused on Iberian forests. Despite of these advances, our empirical and theoretical ability to provide integrated assessments of potential impacts (i.e. including both exposition and sensitivity) of climate change and adaptive capacity is still very limited. An adequate estimation of vulnerability requires improving our knowledge about the adaptive capacity of species and their response to extreme environmental changes (e.g. through long-term monitoring networks), as well as integrating the knowledge obtained from models developed at different levels of biological organization, from physiological process-based models to aggregated species distribution models.Esta revisión ha sido financiada por el proyecto REMEDINAL-2 de la Comunidad de Madrid (S2009/AMB-1783) y el proyecto IN-2013-004 de The Leverhulme Trust
Enhanced Connectivity of Quantum Hardware with Digital-Analog Control
Quantum computers based on superconducting circuits are experiencing rapid development, with the aim to outperform classical computers in certain useful tasks in the near future. However, the currently available chip fabrication technologies limit the capability of gathering a large number of high-quality qubits in a single superconducting chip, a requirement for implementing quantum error correction. Furthermore, achieving high connectivity in a chip poses a formidable technological challenge. Here, we propose a hybrid digital-analog quantum algorithm that enhances the physical connectivity among qubits coupled by an arbitrary inhomogeneous nearest-neighbor Ising Hamiltonian and generates an arbitrary all-to-all Ising Hamiltonian only by employing single-qubit rotations. Additionally, we optimize the proposed algorithm in the number of analog blocks and in the time required for the simulation. These results take advantage of the natural evolution of the system by combining the flexibility of digital steps with the robustness of analog quantum computing, allowing us to improve the connectivity of the hardware and the efficiency of quantum algorithmThe authors acknowledge support from Spanish Government PGC2018-095113-B-I00 (MCIU/AEI/FEDER, UE) and Basque Government IT986-16. The authors also acknowledge support from the projects QMiCS (820505) and OpenSuperQ (820363) of the EU Flagship on Quantum Technologies, as well as from the EU FET Open project Quromorphic (828826). This material is also based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advance Scientific Computing Research (ASCR), under field work Proposal No. ERKJ33
Livestock activity biomarkers: Estimating domestication and diet of livestock in ancient samples
[EN]Faecal matter is commonly recovered from archaeological sites related to human/animal activity. The identification of its source is essential to understand the domestication process and the relationship between humans and domestic animals in ancient times. Additionally, faecal matter is useful for determining the diet of animals. Therefore, the use of an appropriate biomarker is essential.
The ratios of 5 beta-Stanols and bile acid biomarkers are most commonly used to identify the biogenic origin of faecal matter. However, other biomarkers such as archaeol can be a good proxy for ruminants.
Conversely, plant-based diet of the animals can be discerned by analysis of faecal matter. n-Alkanes are the most common proxies of the animal diet, followed by long-chain fatty acids and long-chain alcohols, and the interest in the analysis of carbon isotopes has recently increased owing to the possibility of distinguishing animal diets.
In this review, we describe the identification of faecal and diet biomarkers in animals. Ratios and proxies used in archaeological fields are also described and discussed to determine the best approach for accurate identification.This work was funded by the Basque Government, Research Groups of the Basque University System (Project No. IT1186-19)
- …