74 research outputs found

    Defect configurations and dynamical behavior in a Gay-Berne nematic emulsion

    Full text link
    To model a nematic emulsion consisting of a surfactant-coated water droplet dispersed in a nematic host, we performed a molecular dynamics simulation of a droplet immersed in a system of 2048 Gay-Berne ellipsoids in a nematic phase. Strong radial anchoring at the surface of the droplet induced a Saturn ring defect configuration, consistent with theoretical predictions for very small droplets. A surface ring configuration was observed for lower radial anchoring strengths, and a pair of point defects was found near the poles of the droplet for tangential anchoring. We also simulated the falling ball experiment and measured the drag force anisotropy, in the presence of strong radial anchoring as well as zero anchoring strength.Comment: 17 pages, 15 figure

    Effective triplet interactions in nematic colloids

    Full text link
    Three-body effective interactions emerging between parallel cylindrical rods immersed in a nematic liquid crystals are calculated within the Landau-de Gennes free energy description. Collinear, equilateral and midplane configurations of the three colloidal particles are considered. In the last two cases the effective triplet interaction is of the same magnitude and range as the pair one

    Friction Drag on a Particle Moving in a Nematic Liquid Crystal

    Full text link
    The flow of a liquid crystal around a particle does not only depend on its shape and the viscosity coefficients but also on the direction of the molecules. We studied the resulting drag force on a sphere moving in a nematic liquid crystal (MBBA) in a low Reynold's number approach for a fixed director field (low Ericksen number regime) using the computational artificial compressibility method. Taking the necessary disclination loop around the sphere into account, the value of the drag force anisotropy (F_\perp/F_\parallel=1.50) for an exactly computed field is in good agreement with experiments (~1.5) done by conductivity diffusion measurements. We also present data for weak anchoring of the molecules on the particle surface and of trial fields, which show to be sufficiently good for most applications. Furthermore, the behaviour of the friction close to the transition point nematic isotropic and for a rod-like and a disc-like liquid crystal will be given.Comment: 23 pages RevTeX, including 3 PS figures, 1 PS table and 1 PS-LaTeX figure; Accepted for publication in Phys. Rev.

    Simulating Particle Dispersions in Nematic Liquid-Crystal Solvents

    Full text link
    A new method is presented for mesoscopic simulations of particle dispersions in nematic liquid crystal solvents. It allows efficient first-principle simulations of the dispersions involving many particles with many-body interactions mediated by the solvents. A simple demonstration is shown for the aggregation process of a two dimentional dispersion.Comment: 5 pages, 5 figure

    A Smooth Interface Method for Simulating Liquid Crystal Colloid Dispersions

    Full text link
    A new method is presented for mesoscopic simulations of particle dispersions in liquid crystal solvents. It allows efficient first-principle simulations of the dispersions involving many particles with many-body interactions mediated by the solvents. Demonstrations have been performed for the aggregation of colloid dispersions in two-dimensional nematic and smectic-C* solvents neglecting hydrodynamic effects, which will be taken into account in the near future.Comment: 13 pages, 4 figure

    Effective interactions of colloids on nematic films

    Get PDF
    The elastic and capillary interactions between a pair of colloidal particles trapped on top of a nematic film are studied theoretically for large separations dd. The elastic interaction is repulsive and of quadrupolar type, varying as d5d^{-5}. For macroscopically thick films, the capillary interaction is likewise repulsive and proportional to d5d^{-5} as a consequence of mechanical isolation of the system comprised of the colloids and the interface. A finite film thickness introduces a nonvanishing force on the system (exerted by the substrate supporting the film) leading to logarithmically varying capillary attractions. However, their strength turns out to be too small to be of importance for the recently observed pattern formation of colloidal droplets on nematic films.Comment: 13 pages, accepted by EPJ

    Defect structures and torque on an elongated colloidal particle immersed in a liquid crystal host

    Full text link
    Combining molecular dynamics and Monte Carlo simulation we study defect structures around an elongated colloidal particle embedded in a nematic liquid crystal host. By studying nematic ordering near the particle and the disclination core region we are able to examine the defect core structure and the difference between two simulation techniques. In addition, we also study the torque on a particle tilted with respect to the director, and modification of this torque when the particle is close to the cell wall

    Topological Defects and Interactions in Nematic Emulsions

    Full text link
    Inverse nematic emulsions in which surfactant-coated water droplets are dispersed in a nematic host fluid have distinctive properties that set them apart from dispersions of two isotropic fluids or of nematic droplets in an isotropic fluid. We present a comprehensive theoretical study of the distortions produced in the nematic host by the dispersed droplets and of solvent mediated dipolar interactions between droplets that lead to their experimentally observed chaining. A single droplet in a nematic host acts like a macroscopic hedgehog defect. Global boundary conditions force the nucleation of compensating topological defects in the nematic host. Using variational techniques, we show that in the lowest energy configuration, a single water droplet draws a single hedgehog out of the nematic host to form a tightly bound dipole. Configurations in which the water droplet is encircled by a disclination ring have higher energy. The droplet-dipole induces distortions in the nematic host that lead to an effective dipole-dipole interaction between droplets and hence to chaining.Comment: 17 double column pages prepared by RevTex, 15 eps figures included in text, 2 gif figures for Fig. 1
    corecore