33 research outputs found

    Estudo de regionalização de vazões médias na região do Médio Uruguai.

    Get PDF
    No Brasil ainda existem regiões onde os dados hidrológicos básicos são reduzidos ou inexistentes, devido aos elevados custos de implantação, operação e manutenção de uma rede hidrométrica, principalmente em grandes bacias. Além disso, muitos postos hidrológicos com poucos anos de dados não retratam necessariamente uma amostra representativa.bitstream/item/17808/1/cnptiacirc04.pd

    Vibrational Excitations in Weakly Coupled Single-Molecule Junctions: A Computational Analysis

    Full text link
    In bulk systems, molecules are routinely identified by their vibrational spectrum using Raman or infrared spectroscopy. In recent years, vibrational excitation lines have been observed in low-temperature conductance measurements on single molecule junctions and they can provide a similar means of identification. We present a method to efficiently calculate these excitation lines in weakly coupled, gateable single-molecule junctions, using a combination of ab initio density functional theory and rate equations. Our method takes transitions from excited to excited vibrational state into account by evaluating the Franck-Condon factors for an arbitrary number of vibrational quanta, and is therefore able to predict qualitatively different behaviour from calculations limited to transitions from ground state to excited vibrational state. We find that the vibrational spectrum is sensitive to the molecular contact geometry and the charge state, and that it is generally necessary to take more than one vibrational quantum into account. Quantitative comparison to previously reported measurements on pi-conjugated molecules reveals that our method is able to characterize the vibrational excitations and can be used to identify single molecules in a junction. The method is computationally feasible on commodity hardware.Comment: 9 pages, 7 figure

    Toward continental hydrologic–hydrodynamic modeling in South America

    Get PDF
    Providing reliable estimates of streamflow and hydrological fluxes is a major challenge for water resources management over national and transnational basins in South America. Global hydrological models and land surface models are a possible solution to simulate the terrestrial water cycle at the continental scale, but issues about parameterization and limitations in representing lowland river systems can place constraints on these models to meet local needs. In an attempt to overcome such limitations, we extended a regional, fully coupled hydrologic–hydrodynamic model (MGB; Modelo hidrológico de Grandes Bacias) to the continental domain of South America and assessed its performance using daily river discharge, water levels from independent sources (in situ, satellite altimetry), estimates of terrestrial water storage (TWS) and evapotranspiration (ET) from remote sensing and other available global datasets. In addition, river discharge was compared with outputs from global models acquired through the eartH2Observe project (HTESSEL/CaMa-Flood, LISFLOOD and WaterGAP3), providing the first cross-scale assessment (regional/continental&thinsp; × &thinsp;global models) that makes use of spatially distributed, daily discharge data. A satisfactory representation of discharge and water levels was obtained (Nash–Sutcliffe efficiency, NSE&thinsp;&gt;&thinsp;0.6 in 55&thinsp;% of the cases) and the continental model was able to capture patterns of seasonality and magnitude of TWS and ET, especially over the largest basins of South America. After the comparison with global models, we found that it is possible to obtain considerable improvement on daily river discharge, even by using current global forcing data, just by combining parameterization and better routing physics based on regional experience. Issues about the potential sources of errors related to both global- and continental-scale modeling are discussed, as well as future directions for improving large-scale model applications in this continent. We hope that our study provides important insights to reduce the gap between global and regional hydrological modeling communities.</p

    Electronic state spectroscopy by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy and ab initio calculations of ethyl acetate

    Get PDF
    Abstract: The high-resolution vacuum ultraviolet photoabsorption spectrum of ethyl acetate,C4H8O2, is presented over the energy range 4.5−10.7 eV (275.5−116.0 nm). Valence and Rydberg transitionsand their associated vibronic series observed in the photoabsorption spectrum, have beenassigned in accordance with new ab initio calculations of the vertical excitation energiesand oscillator strengths. Also, the photoabsorption cross sections have been used tocalculate the photolysis lifetime of this ester in the upper stratosphere(20−50 km). Calculationshave also been carried out to determine the ionisation energies and fine structure of thelowest ionic state of ethyl acetate and are compared with a newly recorded photoelectronspectrum (from 9.5 to 16.7 eV). Vibrational structure is observed in the firstphotoelectron band of this molecule for the first time

    Assessment of the MODIS global evapotranspiration algorithm using eddy covariance measurements and hydrological modelling in the Rio Grande basin

    No full text
    Remote sensing is considered the most effective tool for estimating evapotranspiration (ET) over large spatial scales. Global terrestrial ET estimates over vegetated land surfaces are now operationally produced at 1-km spatial resolution using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the MOD16 algorithm. To evaluate the accuracy of this product, ground-based measurements of energy fluxes obtained from eddy covariance sites installed in tropical biomes and from a hydrological model (MGB-IPH) were used to validate MOD16 products at local and regional scales. We examined the accuracy of the MOD16 algorithm at two sites in the Rio Grande basin, Brazil, one characterized by a sugar-cane plantation (USE), the other covered by natural savannah vegetation (PDG) for the year 2001. Inter-comparison between 8-day average MOD16 ET estimates and flux tower measurements yielded correlations of 0.78 to 0.81, with root mean square errors (RMSE) of 0.78 and 0.46 mm d-1, at PDG and USE, respectively. At the PDG site, the annual ET estimate derived by the MOD16 algorithm was 19% higher than the measured amount. For the average annual ET at the basin-wide scale (over an area of 145 000 km2), MOD16 estimates were 21% lower than those from the hydrological model MGB-IPH. Misclassification of land use and land cover was identified as the largest contributor to the error from the MOD16 algorithm. These estimates improve significantly when results are integrated into monthly or annual time intervals, suggesting that the algorithm has a potential for spatial and temporal monitoring of the ET process, continuously and systematically, through the use of remote sensing data
    corecore