5,051 research outputs found

    Privacy of a lossy bosonic memory channel

    Full text link
    We study the security of the information transmission between two honest parties realized through a lossy bosonic memory channel when losses are captured by a dishonest party. We then show that entangled inputs can enhance the private information of such a channel, which however does never overcome that of unentangled inputs in absence of memory.Comment: RevTex file, 4 pages, 2 figure

    An exact fluid model for relativistic electron beams: The many moments case

    Full text link
    An interesting and satisfactory fluid model has been proposed in literature for the the description of relativistic electron beams. It was obtained with 14 independent variables by imposing the entropy principle and the relativity principle. Here the case is considered with an arbitrary number of independent variables, still satisfying the above mentioned two principles; these lead to conditions whose general solution is here found. We think that the results satisfy also a certain ordering with respect to a smallness parameter ϵ\epsilon measuring the dispersion of the velocity about the mean; this ordering generalizes that appearing in literature for the 14 moments case

    Experimental studies on thermodynamic effects of developed cavitation

    Get PDF
    A method for predicting thermodynamic effects of cavitation (changes in cavity pressure relative to stream vapor pressure) is presented. The prediction method accounts for changes in liquid, liquid temperature, flow velocity, and body scale. Both theoretical and experimental studies used in formulating the method are discussed. The prediction method provided good agreement between predicted and experimental results for geometrically scaled venturis handling four different liquids of widely diverse physical properties. Use of the method requires geometric similarity of the body and cavitated region and a known reference cavity-pressure depression at one operating condition

    A General Correlation of Temperature Profiles Downstream of a Heated-Air Jet Directed Perpendicularly to an Air Stream

    Get PDF
    An experimental investigation was conducted to determine the temperature profile downstream of a heated-air jet directed perpendicularly to an air stream. The profiles were determined at several positions downstream of the jet as functions of jet density, jet velocity, freestream density, free-stream velocity, jet temperature, and orifice flow coefficient. A method is presented which yields a good approximation of the temperature profile in terms of dimensionless parameters of the flow and geometric conditions

    Investigation of Heat Transfer From

    Get PDF
    The convective heat transfer from the surface of an ellipsoidal forebody of fineness ratio 3 and 20-inch maximum diameter was investigated in clear air for both stationary and rotating operation over a range of conditions including air speeds up to 240 knots, rotational speeds up to 1200 rpm, and angles of attack of 0 deg, 3 deg, and 6 deg. The results are presented in the form of heat-transfer coefficients and the correlation of Nusselt and Reynolds numbers. Both a uniform surface temperature and a uniform input heater density distribution were used. The experimental results agree well with theoretical predictions for uniform surface temperature distribution. Complete agreement was not obtained with uniform input heat density in the laminar-flow region because of conduction effects. No significant effects of rotation were obtained over the range of airstream and rotational speeds investigated. Operation at angle of attack had only minor effects on the local heat transfer. Transition from laminar to turbulent heat transfer occurred over a wide range of Reynolds numbers. The location of transition depended primarily on surface roughness and pressure and temperature gradients. Limited transient heating data indicate that the variation of surface temperature with time followed closely an exponential relation

    Performance of a highly loaded two stage axial-flow fan

    Get PDF
    A two-stage axial-flow fan with a tip speed of 1450 ft/sec (442 m/sec) and an overall pressure ratio of 2.8 was designed, built, and tested. At design speed and pressure ratio, the measured flow matched the design value of 184.2 lbm/sec (83.55kg/sec). The adiabatic efficiency at the design operating point was 85.7 percent. The stall margin at design speed was 10 percent. A first-bending-mode flutter of the second-stage rotor blades was encountered near stall at speeds between 77 and 93 percent of design, and also at high pressure ratios at speeds above 105 percent of design. A 5 deg closed reset of the first-stage stator eliminated second-stage flutter for all but a narrow speed range near 90 percent of design

    Performance with and without inlet radial distortion of a transonic fan stage designed for reduced loading in the tip region

    Get PDF
    A transonic compressor stage designed for a reduced loading in the tip region of the rotor blades was tested with and without inlet radial distortion. The rotor was 50 cm in diameter and designed for an operating tip speed of 420 m/sec. Although the rotor blade loading in the tip region was reduced to provide additional operating range, analysis of the data indicates that the flow around the damper appears to be critical and limited the stable operating range of this stage. For all levels of tip and hub radial distortion, there was a large reduction in the rotor stall margin

    Experimental Investigation of Sublimation of Ice at Subsonic and Supersonic Speeds and Its Relation to Heat Transfer

    Get PDF
    An experimental investigation was conducted in a 3.84- by 10-inch tunnel to determine the mass transfer by sublimation, heat transfer, and skin friction for an iced surface on a flat plate for Mach numbers of 0.4, 0.6, and 0.8 and pressure altitudes to 30,000 feet. Measurements of rates of sublimation were also made for a Mach number of 1.3 at a pressure altitude of 30,000 feet. The results show that the parameters of sublimation and heat transfer were 40 to 50 percent greater for an iced surface than was the bare-plate heat-transfer parameter. For iced surfaces of equivalent roughness, the ratio of sublimation to heat-transfer parameters was found to be 0.90. The sublimation data obtained at a Mach number of 1.3 showed no appreciable deviation from that obtained at subsonic speeds. The data obtained indicate that sublimation as a means of removing ice formations of appreciable thickness is usually too slow to be of mach value in the de-icing of aircraft at high altitudes
    corecore