18 research outputs found

    Implications of species addition and decline for nutrient dynamics in freshwaters.

    Get PDF
    In terrestrial and aquatic ecosystems, organisms directly affect nutrient storage and cycling by sequestering nutrients via growth and remineralizing nutrients via excretion and egestion. Therefore, species introductions and extirpations can profoundly affect nutrient storage and remineralization rates, and present a challenge for conserving ecosystem function in fresh waters. The literature of consumer-driven nutrient dynamics is growing rapidly, but studies of consumer effects on nutrient storage and remineralization across species and among ecosystems are limited. We compared the effects of 3 grazing taxa, nonnative armored catfish in Mexican streams, native mussels in Oklahoma streams, and native tadpoles in Panamanian streams, on nutrient storage and remineralization. We examined interactions among organismal stoichiometry and biomass, nutrient storage, remineralization rates, and ecosystem size across these 3 groups following species decline (tadpoles and mussels) or introduction (armored catfish) to gain a better understanding of organism-specific effects on nutrient dynamics among freshwater ecosystems. Collectively, our results suggest that the ecosystem-level effect of consumer-driven nutrient dynamics is strongly influenced by environmental variables and is taxon specific. Major changes in biomass of stoichiometrically distinctive organisms can lead to subsequent changes in the flux and storage of elements in an ecosystem, but the overall effect of aquatic animals on nutrient dynamics also is determined by discharge and nutrient-limitation patterns in streams and rivers

    Neotropical freshwater crabs (Decapoda: Pseudothelphusidae) shred leaves

    Get PDF
    Freshwater crabs are macroconsumers that are commonly found in Neotropical headwater streams that may play a key role in energy flow and nutrient cycling in detrital food webs. Although studies have examined the feeding habits of trichodactylid crabs, little is known of this behavior in pseudothelphusid species, and specifically whether they actually consume leaf material. We conducted three nine-day laboratory trials with pseudothelphusid crabs (Ptychophallus tumimanus (Rathbun, 1898)) and leaves (Koanophyllon pittieri) to investigate whether crabs shred leaves. We hypothesized that leaf mass loss would be faster with crabs present relative to control tanks with only leaves. Leaf mass loss was significantly higher (p < 0.001) in tanks with crabs (0.49 ± 0.07 g, mean ± 1 SD) compared to control tanks (0.31 ± 0.05 g). We observed crabs manipulating, shredding, and consuming leaves, with leaf fragments and egesta present in tanks with crabs but not in control tanks. Their consumption and egestion activity may affect nutrient availability and transformation by stimulating microbial activity during leaf breakdown and converting coarse particulate organic matter (CPOM) to fine particulate organic matter (FPOM). Therefore, freshwater crabs need to be considered when studying energy flow and nutrient cycling in detrital food webs of Neotropical headwater streams.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencias del Mar y Limnología (CIMAR)UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Biologí

    Evidence for the Persistence of Food Web Structure After Amphibian Extirpation in a Neotropical Stream

    Get PDF
    Species losses are predicted to simplify food web structure, and disease‐driven amphibian declines in Central America offer an opportunity to test this prediction. Assessment of insect community composition, combined with gut content analyses, was used to generate periphyton–insect food webs for a Panamanian stream, both pre‐ and post‐amphibian decline. We then used network analysis to assess the effects of amphibian declines on food web structure. Although 48% of consumer taxa, including many insect taxa, were lost between pre‐ and post‐amphibian decline sampling dates, connectance declined by less than 3%. We then quantified the resilience of food web structure by calculating the number of expected cascading extirpations from the loss of tadpoles. This analysis showed the expected effects of species loss on connectance and linkage density to be more than 60% and 40%, respectively, than were actually observed. Instead, new trophic linkages in the post‐decline food web reorganized the food web topology, changing the identity of “hub” taxa, and consequently reducing the effects of amphibian declines on many food web attributes. Resilience of food web attributes was driven by a combination of changes in consumer diets, particularly those of insect predators, as well as the appearance of generalist insect consumers, suggesting that food web structure is maintained by factors independent of the original trophic linkages

    INFLUENCES OF DISEASE-DRIVEN AMPHIBIAN DECLINES ON ECOSYSTEM STRUCTURE AND FUNCTION IN PANAMANIAN HEADWATER STREAMS

    No full text
    Understanding relationships between biodiversity and ecosystem function is a critical challenge, particularly in freshwater ecosystems where species losses are occurring at unprecedented rates. There is a particular need to examine these relationships in natural settings at large spatial scales. Ongoing, disease-driven amphibian declines may influence the structure and function of stream ecosystems, but little is known of the potential roles of stream-dwelling tadpoles in consumer-resource dynamics, ecosystem functions such as decomposition, and ecosystem-level biogeochemical cycling. Tadpoles in tropical streams likely regulate flows and ratios of nitrogen (N), phosphorus (P), and carbon (C), influencing ecosystems by altering nutrient supplies to other animals and their food resources. I used ecological stoichiometry as a framework to assess how the sudden loss of consumer biodiversity in neotropical headwater streams affected ecosystem function. I quantified N and P excretion and C:N:P ratios of tadpoles, macroinvertebrates, and food resources in healthy sites (pre-decline) and sites where disease-driven amphibian declines had occurred (post-decline). I tested the hypothesis of consumer homeostasis (i.e., that organisms maintain consistent body nutrient ratios by altering excretion chemistry) over a range of taxa and size classes. I also used mesocosms in a natural stream setting to quantify the effects of grazing tadpoles, shredding macroinvertebrates and a combination of the two on leaf decomposition and associated microbial activity. Finally, I examined macroinvertebrate community structure and quantified biomass and nutrient storage in tadpoles, macroinvertebrates, and basal resources in pre-decline and post-decline sites. I also measured excretion rates, volumetric excretion, and nutrient turnover for both tadpoles and macroinvertebrates. Patterns of consumer-resource stoichiometry varied with the presence or absence of tadpoles. There were higher concentrations of C, N, and P in basal resources in pre-decline sites compared to post-decline sites, but little variation in elemental ratios among sites. Elemental composition and molar ratios in grazers and shredders varied, with pronounced differences in %N for gatherers and filterers across sites. Macroinvertebrate grazer elemental composition was higher for all elements and had lower C:N, N:P, and C:P molar ratios in pre-decline sites compare to grazers in post-decline sites, while shredders showed the opposite pattern. There were differences in both taxon-specific allometric and stoichiometric relationships in tadpoles and macroinvertebrates between pre- and post-decline sites. Body P content was a good predictor of tadpole P excretion and tadpoles in pre-decline sites excreted more P per unit body P than those in post decline sites. Individuals deviated from strict homeostasis, and the degree of deviation varied among taxa. Tadpoles also affected leaf decomposition by influencing microbial communities and altering shredding macroinvertebrate feeding. Higher respiration rates of leaf discs in chambers with tadpoles suggested that tadpoles enhanced microbial activity by excreting nutrients through feeding and excretion. Shredders alone had little effect on respiration rates, indicating that tadpoles play an important and unique role in enhancing microbial activity and litter decomposition. Leaf area loss was greatest when tadpoles and macroinvertebrates were together, indicating facilitation. Macroinvertebrates are important nutrient recyclers in neotropical headwater streams, but their role is greatly decreased in the absence of larval amphibians. I measured ~80% lower standing stocks and storage of C, N, and P in basal resources in post-decline compared to pre-decline sites. Storage of C, N, and P in both tadpoles and macroinvertebrates also decreased in post-decline sites. I also observed 98% decreases in tadpole nutrient excretion and egestion rates, and an additional decrease in macroinvertebrate excretion rates (~80%) for both N and P in post-decline versus pre-decline sites. These decreases led to \u3e8,000% increase in the distance that it took tadpoles to turn over the ambient N pools in post-decline sites, and a 130% increase for macroinvertebrates. Similar patterns were evident for P turnover, with turnover distance increasing by 6,000% and 400% in post-decline sites for tadpoles and macroinvertebrates, respectively. My results indicate that N and P excretion by both tadpoles and macroinvertebrates constitute significant nutrient fluxes in these headwater streams. Both tadpole and macroinvertebrate communities were excreting nutrients at similar rates in pre-decline sites, suggesting that they were playing equally significant roles in their contribution to ecosystem demand. My results demonstrate that tadpoles are important consumers in Neotropical headwater streams and their loss significantly alters stream food webs and ecosystem functions

    Ontogenetic Diet Shifts among Neotropical Stream Macroinvertebrates

    No full text
    Size-dependent dietary shifts, which are often linked to gape-size limitation and intraspecific competition, are common among vertebrates. However, few studies have examined these patterns in aquatic macroinvertebrates. We examined gut contents, tissue chemistry, and excretion of different size classes of dominant macroinvertebrate taxa in a Panamanian headwater stream. As they grew, non-predatory taxa and predatory midges increased consumption of vascular plant material and amorphous detritus and decreased consumption of non-algal biofilm. Predatory taxa shifted from high degrees of omnivory to more carnivorous diets during later instars, likely due to gape limitation. Nitrogen (N) and phosphorus (P) excretion rates decreased with increasing size, suggesting reduced nutritional demands of later instars. Also, P content of macroinvertebrate tissues decreased with size, suggesting ontogenetic shifts from smaller, nutrient-rich foods to larger, nutrient-poor food types with increasing individual size. More nutritious resources are essential for growth during early instars, while later instars may switch to detrital resources due to higher availability and lower nutritional demands. Our results suggest generalist feeding patterns are prevalent among tropical stream macroinvertebrates, which may facilitate coexistence in biologically diverse regions

    Emerging towards a more diverse community of freshwater scientists, using the 4DEE framework

    No full text
    Presented at the Ecological Society of America Virtual Annual Meeting
    corecore