748 research outputs found

    Current concepts of enzyme histochemistry in modern pathology

    Get PDF
    Enzyme histochemistry serves as a link between biochemistry and morphology. It is based on metabolization of a substrate provided to a tissue enzyme in its orthotopic localization. Visualization is accomplished with an insoluble dye product. It is a sensitive dynamic technique that mirrors even early metabolic imbalance of a pathological tissue lesion, combined with the advantage of histotopographic enzyme localization. With the advent of immunohistochemistry and DNA-oriented molecular pathology techniques, the potential of enzyme histochemistry currently tends to be underrecognized. This review aims to draw attention to the broad range of applications of this simple, rapid and inexpensive method. Alkaline phosphatase represents tissue barrier functions in brain capillaries, duodenal enterocyte and proximal kidney tubule brush borders. Decrease in enzyme histochemical alkaline phosphatase activity indicates serious functional impairment. Enzyme histochemical increase in lysosomal acid phosphatase activity is an early marker of ischemic tissue lesions. Over the last four decades, acetylcholinesterase enzyme histochemistry has proven to be the gold standard for the diagnosis of Hirschsprung disease and is one of the most commonly applied enzyme histochemical methods today. Chloroacetate esterase and tartrate-resistant phosphatase are both resistant to formalin fixation, EDTA decalcification and paraffin embedding. Early enzyme histochemical insight into development of a pathologic tissue lesion and evaluation of function and vitality of tissue enhance our understanding of the pathophysiology of diseases. In this process, enzyme histochemistry constitutes a valuable complement to conventional histology, immunohistochemistry and molecular pathology for both diagnostic and experimental pathology

    ZwanzigJahre diagnostisches Hirschsprung-Kompetenzzentrum in Basel

    Get PDF
    Zusammenfassung: Hintergrund: In vorliegendem Bericht werden die in 20 Jahren gesammelten Erfahrungen des Basler Hirschsprung-Kompetenzzentrums zusammengestellt. Methodik: Zwischen 1987 und 2006 wurden 19.365 Rektumschleimhautbiopsien untersucht. Die Biopsien stammten von 6615 Kindern mit chronischer Obstipation im Alter von einer Woche bis zu 4Jahren. Die Biopsien wurden in Lehrkrankenhäusern in ganz Deutschland gewonnen und auf Trockeneis per Intercity-Kurierdienst nach Basel transportiert. Das gefrorene Gewebe wurde im Kryostaten in Serienschnitten verarbeitet. An den Biopsien wurden enzymhistochemische Reaktionen durchgeführt. Ergebnis: Insgesamt wurden in 20Jahren 935 Morbus-Hirschsprung-Fälle (14%) diagnostiziert (769 klassische Hirschsprung-Erkrankungen, 68 totale Aganglionosen des Kolons, 98 ultrakurze Hirschsprung-Erkrankungen). Im Interesse einer Qualitätssicherung wurden alle Befunde durch einen zweiten unabhängigen Untersucher beurteilt. Es gab keine falsch-positiven oder falsch-negativen Diagnosen. Die Schnittpräparate waren innerhalb von 2h nach Erhalt auswertbar. Eine Acetylcholinesterase-Reaktion diente der Darstellung der Nervenfasern, die bei Vorliegen eines Hirschsprungs charakteristisch erhöht ist. Succinat- und Lactat-Dehydrogenase sowie Nitroxid-Synthetase ermöglichten eine elektive Nervenzellfärbung des Plexus submucosus und dienten als zweite Bestätigung einer Aganglionose. Schlussfolgerung: Von 100 chronisch obstipierten Kindern hatten im Mittel 12 eine Hirschsprung-Erkrankung. 2% der Kinder wiesen eine totale Kolonaganglionose oder einen ultrakurzen Hirschsprung auf. Die enzymhistochemische Hirschsprung-Diagnostik erwies sich als 100% zuverlässig und zeitsparen

    Short-time critical dynamics at perfect and non-perfect surface

    Full text link
    We report Monte Carlo simulations of critical dynamics far from equilibrium on a perfect and non-perfect surface in the 3d Ising model. For an ordered initial state, the dynamic relaxation of the surface magnetization, the line magnetization of the defect line, and the corresponding susceptibilities and appropriate cumulant is carefully examined at the ordinary, special and surface phase transitions. The universal dynamic scaling behavior including a dynamic crossover scaling form is identified. The exponent β1\beta_1 of the surface magnetization and β2\beta_2 of the line magnetization are extracted. The impact of the defect line on the surface universality classes is investigated.Comment: 11figure

    A Parallel Solver for Graph Laplacians

    Full text link
    Problems from graph drawing, spectral clustering, network flow and graph partitioning can all be expressed in terms of graph Laplacian matrices. There are a variety of practical approaches to solving these problems in serial. However, as problem sizes increase and single core speeds stagnate, parallelism is essential to solve such problems quickly. We present an unsmoothed aggregation multigrid method for solving graph Laplacians in a distributed memory setting. We introduce new parallel aggregation and low degree elimination algorithms targeted specifically at irregular degree graphs. These algorithms are expressed in terms of sparse matrix-vector products using generalized sum and product operations. This formulation is amenable to linear algebra using arbitrary distributions and allows us to operate on a 2D sparse matrix distribution, which is necessary for parallel scalability. Our solver outperforms the natural parallel extension of the current state of the art in an algorithmic comparison. We demonstrate scalability to 576 processes and graphs with up to 1.7 billion edges.Comment: PASC '18, Code: https://github.com/ligmg/ligm

    A Nonlinear Multigrid Solver for an Atmospheric General Circulation Model Based on Semi-Implicit Semi-Lagrangian Advection of Potential Vorticity

    Get PDF
    This work represents a part of a project to develop an atmospheric general circulation model based on the semi-Lagrangian advection of potential vorticity (PC) with divergence as the companion prognostic variable

    Regularization-robust preconditioners for time-dependent PDE constrained optimization problems

    Get PDF
    In this article, we motivate, derive and test �effective preconditioners to be used with the Minres algorithm for solving a number of saddle point systems, which arise in PDE constrained optimization problems. We consider the distributed control problem involving the heat equation with two diff�erent functionals, and the Neumann boundary control problem involving Poisson's equation and the heat equation. Crucial to the eff�ectiveness of our preconditioners in each case is an eff�ective approximation of the Schur complement of the matrix system. In each case, we state the problem being solved, propose the preconditioning approach, prove relevant eigenvalue bounds, and provide numerical results which demonstrate that our solvers are eff�ective for a wide range of regularization parameter values, as well as mesh sizes and time-steps

    Boundary critical behaviour at mm-axial Lifshitz points: the special transition for the case of a surface plane parallel to the modulation axes

    Full text link
    The critical behaviour of dd-dimensional semi-infinite systems with nn-component order parameter ϕ\bm{\phi} is studied at an mm-axial bulk Lifshitz point whose wave-vector instability is isotropic in an mm-dimensional subspace of Rd\mathbb{R}^d. Field-theoretic renormalization group methods are utilised to examine the special surface transition in the case where the mm potential modulation axes, with 0≤m≤d−10\leq m\leq d-1, are parallel to the surface. The resulting scaling laws for the surface critical indices are given. The surface critical exponent η∥sp\eta_\|^{\rm sp}, the surface crossover exponent Φ\Phi and related ones are determined to first order in \epsilon=4+\case{m}{2}-d. Unlike the bulk critical exponents and the surface critical exponents of the ordinary transition, Φ\Phi is mm-dependent already at first order in ϵ\epsilon. The \Or(\epsilon) term of η∥sp\eta_\|^{\rm sp} is found to vanish, which implies that the difference of β1sp\beta_1^{\rm sp} and the bulk exponent β\beta is of order ϵ2\epsilon^2.Comment: 21 pages, one figure included as eps file, uses IOP style file

    Surface critical behavior in fixed dimensions d<4d<4: Nonanalyticity of critical surface enhancement and massive field theory approach

    Full text link
    The critical behavior of semi-infinite systems in fixed dimensions d<4d<4 is investigated theoretically. The appropriate extension of Parisi's massive field theory approach is presented.Two-loop calculations and subsequent Pad\'e-Borel analyses of surface critical exponents of the special and ordinary phase transitions yield estimates in reasonable agreement with recent Monte Carlo results. This includes the crossover exponent Φ(d=3)\Phi (d=3), for which we obtain the values Φ(n=1)≃0.54\Phi (n=1)\simeq 0.54 and Φ(n=0)≃0.52\Phi (n=0)\simeq 0.52, considerably lower than the previous ϵ\epsilon-expansion estimates.Comment: Latex with Revtex-Stylefiles, 4 page

    Surface critical exponents at a uniaxial Lifshitz point

    Full text link
    Using Monte Carlo techniques, the surface critical behaviour of three-dimensional semi-infinite ANNNI models with different surface orientations with respect to the axis of competing interactions is investigated. Special attention is thereby paid to the surface criticality at the bulk uniaxial Lifshitz point encountered in this model. The presented Monte Carlo results show that the mean-field description of semi-infinite ANNNI models is qualitatively correct. Lifshitz point surface critical exponents at the ordinary transition are found to depend on the surface orientation. At the special transition point, however, no clear dependency of the critical exponents on the surface orientation is revealed. The values of the surface critical exponents presented in this study are the first estimates available beyond mean-field theory.Comment: 10 pages, 7 figures include

    A Scheme to Numerically Evolve Data for the Conformal Einstein Equation

    Get PDF
    This is the second paper in a series describing a numerical implementation of the conformal Einstein equation. This paper deals with the technical details of the numerical code used to perform numerical time evolutions from a "minimal" set of data. We outline the numerical construction of a complete set of data for our equations from a minimal set of data. The second and the fourth order discretisations, which are used for the construction of the complete data set and for the numerical integration of the time evolution equations, are described and their efficiencies are compared. By using the fourth order scheme we reduce our computer resource requirements --- with respect to memory as well as computation time --- by at least two orders of magnitude as compared to the second order scheme.Comment: 20 pages, 12 figure
    • …
    corecore