39 research outputs found
A comparison of the bone and growth phenotype of mdx, mdx:cmah-/- and mdx:utrn+/- murine models with the C57BL10 wildtype mouse
The muscular dystrophy X-linked (mdx) mouse is commonly used as a mouse model of Duchenne muscular dystrophy (DMD). Its phenotype is, however, mild, and other mouse models have been explored. The mdx:Cmah−/− mouse carries a human-like mutation in the Cmah gene and has a severe muscle phenotype, but its growth and bone development are unknown. In this study, we compared male mdx, mdx:Utrn+/−, mdx:Cmah−/− and wild-type (WT) mice at 3, 5 and 7 weeks of age to determine the suitability of the mdx:Cmah−/− mouse as a model for assessing growth and skeletal development in DMD. The mdx:Cmah−/− mice were lighter than WT mice at 3 weeks, but heavier at 7 weeks, and showed an increased growth rate at 5 weeks. Cortical bone fraction as assessed by micro-computed tomography was greater in both mdx and mdx:Cmah−/− mice versus WT mice at 7 weeks. Tissue mineral density was also higher in mdx:Cmah−/− mice at 3 and 7 weeks. Gene profiling of mdx:Cmah−/− bone identified increased expression of Igf1, Igf1r and Vegfa. Both the mdx and mdx:Cmah−/− mice showed an increased proportion of regulated bone marrow adipose tissue (BMAT) but a reduction in constitutive BMAT. The mdx:Cmah−/− mice show evidence of catch-up growth and more rapid bone development. This pattern does not mimic the typical DMD growth trajectory and therefore the utility of the mdx:Cmah−/− mouse for studying growth and skeletal development in DMD is limited. Further studies of this model may, however, shed light on the phenomenon of catch-up growth
Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study
Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised
Ecos de la academia: Revista de la Facultad de Educación, Ciencia y Tecnología - FECYT Nro 6
Ecos de la academia, Revista de la Facultad de Educación Ciencia y Tecnología es una publicación científica de la Universidad Técnica del Norte, con revisión por pares a doble ciego que publica artículos en idioma español, quichua, portugués e inglés. Se edita con una frecuencia semestral con dos números por año.En ella se divulgan trabajos originales e inéditos generados por los investigadores, docentes y estudiantes de la FECYT, y contribuciones de profesionales de instituciones docentes e investigativas dentro y fuera del país, con calidad, originalidad y relevancia en las áreas de ciencias sociales y tecnología aplicada.Modelos multidimensionales del bienestar en contextos de enseñanza- aprendizaje: una revisión sistemática.
Nuevas tendencias para el área académica de la Publicidad en la zona 1 del Ecuador.
Propuesta de un curso de escritura académica bajo la base de modelos experienciales.
Aproximación al estudio de las emociones.
Seguimiento a egresados y graduados para actualizar el perfil de egreso y profesional.
Impacto de la Gerencia de Calidad en el clima organizacional en Educación Básica.
Comunicación efectiva del gerente educativo orientada al manejo de conflictos en el personal docente.
Meritocracia: Democratización o exclusión en el acceso a la educación superior en Ecuador.
Asertividad y desempeño académico en estudiantes universitarios.
La creatividad en la formación profesional.
Aspectos metodológicos en el proceso de enseñanza- aprendizaje de la gimnasia en estudiantes
de Educación Física.
English Language Learning Interaction through Web 2.0 Technologies.
La sistematización de la práctica educativa y su relación con la metodología de la investigación.
El ozono y la oxigenación hiperbárica: una vía para mejorar la recuperación en lesiones deportivas.
La labor tutorial: Independencia del aprendizaje en el contexto universitario.
Motivación hacia la profesión docente en la Enseñanza Secundaria.
El uso académico de Facebook y WhatsApp en estudiantes universitarios...
La educación superior en Ecuador: situación actual y factores de mejora de la calidad.
El Proyecto de Investigación “Imbabura Étnica”
Acoustic tweezers for the life sciences
Acoustic tweezers are a versatile set of tools that use sound waves to manipulate bioparticles ranging from nanometer-sized extracellular vesicles to millimeter-sized multicellular organisms. Over the past several decades, the capabilities of acoustic tweezers have expanded from simplistic particle trapping to precise rotation and translation of cells and organisms in three dimensions. Recent advances have led to reconfigured acoustic tweezers that are capable of separating, enriching, and patterning bioparticles in complex solutions. Here, we review the history and fundamentals of acoustic-tweezer technology and summarize recent breakthroughs
An acoustofluidic device for the automated separation of platelet-reduced plasma from whole blood
Abstract Separating plasma from whole blood is an important sample processing technique required for fundamental biomedical research, medical diagnostics, and therapeutic applications. Traditional protocols for plasma isolation require multiple centrifugation steps or multiunit microfluidic processing to sequentially remove large red blood cells (RBCs) and white blood cells (WBCs), followed by the removal of small platelets. Here, we present an acoustofluidic platform capable of efficiently removing RBCs, WBCs, and platelets from whole blood in a single step. By leveraging differences in the acoustic impedances of fluids, our device generates significantly greater forces on suspended particles than conventional microfluidic approaches, enabling the removal of both large blood cells and smaller platelets in a single unit. As a result, undiluted human whole blood can be processed by our device to remove both blood cells and platelets (>90%) at low voltages (25 Vpp). The ability to successfully remove blood cells and platelets from plasma without altering the properties of the proteins and antibodies present creates numerous potential applications for our platform in biomedical research, as well as plasma-based diagnostics and therapeutics. Furthermore, the microfluidic nature of our device offers advantages such as portability, cost efficiency, and the ability to process small-volume samples
High-yield and rapid isolation of extracellular vesicles by flocculation via orbital acoustic trapping: FLOAT
Abstract Extracellular vesicles (EVs) have been identified as promising biomarkers for the noninvasive diagnosis of various diseases. However, challenges in separating EVs from soluble proteins have resulted in variable EV recovery rates and low purities. Here, we report a high-yield ( > 90%) and rapid ( < 10 min) EV isolation method called FLocculation via Orbital Acoustic Trapping (FLOAT). The FLOAT approach utilizes an acoustofluidic droplet centrifuge to rotate and controllably heat liquid droplets. By adding a thermoresponsive polymer flocculant, nanoparticles as small as 20 nm can be rapidly and selectively concentrated at the center of the droplet. We demonstrate the ability of FLOAT to separate urinary EVs from the highly abundant Tamm-Horsfall protein, addressing a significant obstacle in the development of EV-based liquid biopsies. Due to its high-yield nature, FLOAT reduces biofluid starting volume requirements by a factor of 100 (from 20 mL to 200 µL), demonstrating its promising potential in point-of-care diagnostics