22 research outputs found

    M2 macrophages exhibit higher sensitivity to oxLDL-induced lipotoxicity than other monocyte/macrophage subtypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In obesity, phenotypic switches occur in macrophage populations such that the predominantly M2-polarised anti-inflammatory state seen in lean individuals changes to a predominantly M1-polarised pro-inflammatory state in those who are obese. However, the mechanisms by which these phenotypic shifts occur have not yet been fully elucidated.</p> <p>Results</p> <p>The effects of oxLDL (1-40 μg/ml; 24 h) on several parameters relevant to the Unfolded Protein Response (UPR)-mediated lipotoxic effects of oxLDL (disruption of ER Ca<sup>2+ </sup>handling; activation of the UPR transcription factor XBP-1; upregulation of the UPR target genes BiP and CHOP; apoptosis; cell viability) were investigated in human primary monocyte-derived macrophages, and also in monocyte-macrophages derived from the THP-1 monocytic cell line. A consistent pattern was observed: M2-polarised macrophages were more sensitive to the lipotoxic effects of oxLDL than either non-polarised macrophages or non-differentiated monocytic cells. Specifically, M2-polarised macrophages were the only cell type to undergo significantly increased apoptosis (Primary cells: 1.23 ± 0.01 basal; THP-1-derived: 1.97 ± 0.12 basal; <it>P </it>< 0.05 in both cases) and decreased cell viability (Primary cells: 0.79 ± 0.04 basal; THP-1-derived: 0.67 ± 0.02 basal; <it>P </it>< 0.05 in both cases) when exposed to oxLDL levels similar to those seen in overweight individuals (ie. 1 μg/ml).</p> <p>Conclusions</p> <p>We propose that the enhanced susceptibility of M2-polarised macrophages to lipotoxicity seen in the present <it>in vitro </it>study could, over time, contribute to the phenotypic shift seen in obese individuals <it>in vivo</it>. This is because a higher degree of oxLDL-induced lipotoxic cell death within M2 macrophages could contribute to a decrease in numbers of M2 cells, and thus a relative increase in proportion of non-M2 cells, within macrophage populations. Given the pro-inflammatory characteristics of a predominantly M1-polarised state, the data presented here may constitute a useful contribution to our understanding of the origin of the pro-inflammatory nature of obesity, and of the pathogenesis of obesity-associated inflammatory disorders such as Type 2 Diabetes and atherosclerosis.</p

    A comparison of the health benefits of reduced-exertion high-intensity interval training (REHIT) and moderate-intensity walking in type 2 diabetes patients

    Get PDF
    Reduced-exertion high-intensity interval training (REHIT) is a genuinely time-efficient intervention that can improve aerobic capacity and insulin sensitivity in sedentary individuals. The present study compared the effects of REHIT and moderate-intensity walking on health markers in patients with type 2 diabetes (T2D) in a counter-balanced crossover study. Sixteen men with T2D (mean &plusmn; SD age: 55 &plusmn; 5 years, body mass index: 30.6 &plusmn; 2.8 kg&middot;m&minus;2, maximal aerobic capacity: 27 &plusmn; 4 mL&middot;kg&minus;1&middot;min&minus;1) completed 8 weeks of REHIT (three 10-min low-intensity cycling sessions/week with two &ldquo;all-out&rdquo; 10&ndash;20-s sprints) and 8 weeks of moderate-intensity walking (five 30-min sessions/week at an intensity corresponding to 40%&ndash;55% of heart-rate reserve), with a 2-month wash-out period between interventions. Before and after each intervention, participants underwent an incremental fitness test, an oral glucose tolerance test (OGTT), a whole-body dual-energy X-ray absorptiometry scan, and continuous glucose monitoring. REHIT was associated with a significantly larger increase in maximal aerobic capacity compared with walking (7% vs. 1%; time &times; intervention interaction effect:p&lt; 0.05). Both REHIT and walking decreased resting mean arterial pressure (&minus;4%; main effect of time:p&lt; 0.05) and plasma fructosamine (&minus;5%; main effect of time:p&lt; 0.05). Neither intervention significantly improved OGTT-derived measures of insulin sensitivity, glycaemic control measured using continuous glucose monitors, blood lipid profile, or body composition. We conclude that REHIT is superior to a 5-fold larger volume of moderate-intensity walking in improving aerobic fitness, but similar to walking REHIT is not an effective intervention for improving insulin sensitivity or glycaemic control in T2D patients in the short term

    Anti-carcinogenic effects of exercise-conditioned human serum: evidence, relevance and opportunities

    Get PDF
    Regular physical activity reduces the risk of several site-specific cancers in humans and suppresses tumour growth in animal models. The mechanisms through which exercise reduces tumour growth remain incompletely understood, but an intriguing and accumulating body of evidence suggests that the incubation of cancer cells with post-exercise serum can have powerful effects on key hallmarks of cancer cell behaviour in vitro. This suggests that exercise can impact tumour biology through direct changes in circulating proteins, RNA molecules and metabolites. Here, we provide a comprehensive narrative overview of what is known about the effects of exercise-conditioned sera on in vitro cancer cell behaviour. In doing so, we consider the key limitations of the current body of literature, both from the perspective of exercise physiology and cancer biology, and we discuss the potential in vivo physiological relevance of these findings. We propose key opportunities for future research in an area that has the potential to identify key anti-oncogenic protein targets and optimise physical activity recommendations for cancer prevention, treatment and survivorship

    Buying Years to Extinction: Is Compensatory Mitigation for Marine Bycatch a Sufficient Conservation Measure for Long-Lived Seabirds?

    Get PDF
    Along the lines of the ‘polluter pays principle’, it has recently been proposed that the local long-line fishing industry should fund eradication of terrestrial predators at seabird breeding colonies, as a compensatory measure for the bycatch caused by the fishing activity. The measure is economically sound, but a quantitative and reliable test of its biological efficacy has never been conducted. Here, we investigated the demographic consequences of predator eradication for Cory's shearwater Calonectris diomedea, breeding in the Mediterranean, using a population model that integrates demographic rates estimated from individual life-history information with experimental measures of predation and habitat structure. We found that similar values of population growth rate can be obtained by different combinations of habitat characteristics, predator abundance and adult mortality, which explains the persistence of shearwater colonies in islands with introduced predators. Even so, given the empirically obtained values of survival, all combinations of predator abundance and habitat characteristics projected a decline in shearwater numbers. Perturbation analyses indicated that the value and the sensitivity of shearwater population growth rates were affected by all covariates considered and their interactions. A decrease in rat abundance delivered only a small increase in the population growth rate, whereas a change in adult survival (a parameter independent of rat abundance) had the strongest impact on population dynamics. When adult survival is low, rat eradication would allow us to “buy” years before extinction but does not reverse the process. Rat eradication can therefore be seen as an emergency measure if threats on adult survival are eliminated in the medium-term period. For species with low fecundity and long life expectancy, our results suggest that rat control campaigns are not a sufficient, self-standing measure to compensate the biological toll of long-line fisheries

    The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats

    Get PDF
    The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet—undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well
    corecore